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Abstract

Understanding the environmental and disturbance determinants of tree species dominance

and community composition in an ecosystem, is important for informing management and

conservation decisions, through maintaining or improving the existing forest composition

and structure. This study was carried out to quantify the relationship between forest tree

composition structure and environmental and disturbance gradients, in a tropical sub-mon-

tane forest of Eastern Usambara. Vegetation, environmental, and anthropogenic distur-

bance data for 58 plots across Amani and Nilo nature forest reserves were obtained.

Agglomerative hierarchical cluster analysis and canonical correspondence analysis (CCA)

were used to identify plant communities and analyze the influence of environmental vari-

ables and anthropogenic disturbances on tree species and community composition respec-

tively. Four communities were identified and CCA results showed that the variation was

significantly related to elevation, pH, Annual mean temperature, temperature seasonality,

phosphorus nutrients and pressures from adjacent villages and roads. Likewise, environ-

mental factors (climate, soil and topography) explained the most variation (14.5%) of tree

and community composition in relation to disturbance pressure (2.5%). The large and signif-

icant variation in tree species and community patterns explained by environmental factors

suggests a need for site-specific assessment of environmental properties for biodiversity

conservation plans. Similarly, the intensification of human activities and associated impacts

on natural environment should be minimized to maintain forest species composition patterns

and communities. The findings are useful in guiding in policy interventions that focus on min-

imizing human disturbances in the forests and could aid in preserving and restoring the func-

tional organization and tree species composition of the sub-tropical montane forests.

Introduction

Tropical montane forests are characterized by complex ecological systems resulting from dra-

matic changes of physical and geographic properties [1] such as topography [2–5], including;

slope [6], aspect [1,5], climate [7,8], soil [9] and their interactions [10–12] from the base to the
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summit of mountains [13] creating a multitude of microhabitats [3]. Tropical montane forests

are the most unique, with high diversity of vegetation [14,15], but they are also among the

most threatened ecosystems by anthropogenic activities [5,16,17]. Forest disturbances, particu-

larly selective removal of trees [18], have impact on the species composition and dominance

on mountainous landscape [11,19], particularly on the lower elevations [20]. The dynamics of

interaction among individual species and their environmental and disturbances influence spe-

cies composition through coexistence or exclusion [8]. Hence, plant species that respond

equally to the same factors, will usually coexist giving rise to distinct patterns of plant species

communities across the landscape [21,22] while plant species with restricted habitat require-

ments are most susceptible to extinction in the face of anthropogenic pressures [23,24].

Species composition and structure of the tropical montane forests vary across a wide range

of ecological gradients [1,25]. African mountainous areas have large human population densi-

ties encircling and depending on forest resources for their livelihoods [26,27]. This results to

high human impacts on plant species composition including resource utilization, road con-

struction, and residential development [20], increasing the rates of deforestation and forest deg-

radation due to over exploitation of resources [28]. The intensity of these disturbances is likely

to decrease as the distance of the roads and villages from the boundary of the forest increases

[29]. Tanzania government acknowledges deforestation as a major threat to biodiversity, and

has committed to the establishment and management of protected areas (PAs), significantly

reducing the rate of forest degradation and ecosystem fragmentation [30]. However, the effec-

tiveness of PAs management and their ability to withstand anthropogenic pressures varies,

depending on the nature of the anthropogenic activities that pose a threat to the Pas [31].

Several studies have demonstrated that disturbances, physical and geographic factors

[25,32], shape the structure of the forest [20,33,34] reported that, the relationship between tree

species determinants and community composition is complicated because it involves a wide

range of factors and considerations that provide a variety of clues, which partially explain the

relationship, and whose findings cannot be generalized to other ecosystems. Despite being

classified as protected areas (PAs) [35], the scenic beauty and unique biodiversity of the Amani

and Nilo nature forest reserves, along with the high degree of forest accessibility [36,37],

makes them vulnerable to mass tourism pressure [38,39].On the other hand, there hasn’t been

a thorough analysis of how the combined environment and anthropogenic pressures are affect-

ing the tree species composition patterns in both nature reserves. Meanwhile, being able to

predict how tropical forests will react to environmental change requires an understanding of

how quickly the structure and composition of these forests recover and which factors govern

these processes [1,40]. Hence, understanding the influence of environmental and disturbance

factors on plant species composition [41] in an ecosystem, is a prerequisite in developing man-

agement plans [42], important for prioritizing conservation activities at local, regional and

global scales [43]. Thus, this study analyzed forest tree species composition structure along

varying environmental and disturbance gradients in Tropical Sub-montane forests, exploring

(i) How does environmental (climate, topography and soil) and potential disturbance pres-

sures explain the tree species and community composition in tropical sub-montane forests?

(ii) How influential are environmental factors relative to disturbance pressures in explaining

observed species composition?

Materials and methods

Study area

This study was conducted in Amani and Nilo nature forest reserve (NFR), located in Muheza,

Mkinga and Korogwe Districts in Tanga Region of Tanzania. Amani nature Forest reserve
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(NFR) is located between 5˚04’30” - 5˚14’10” S and 38˚30’34” - 38˚40’06” E with an area of

about 8360 ha. The elevation of ANFR is ranging from 190m-1130 m above the sea level

[36,39]. NNFR is located between 4˚50’ - 4˚59’S and 38˚37’ - 38˚41’06” E, covering about 6025

ha (Fig 1). The location of NNFR is at an elevation range of 400 to 1506 m above the sea level.

Both Amani NFR and Nilo NFR are confined to the East Usambara Mountains forests

(EUMFs) located in eastern Tanzania and they are part of the Eastern Arc Mountains (EAM),

which is a chain of mountains that stretches down the coast of East Africa from southern

Kenya to southern Tanzania [36].

The rainfall distribution in EUMFs is bi-modal, peaking between March and May and

between October and December [39]. Rainfall is greatest at higher altitudes and in the south-

east of the mountains, increasing from 1,200 mm annually in the foothills to over 2,300 mm at

higher altitudes [36]. The dry seasons are from June to August and January to March. The veg-

etation of these forests’ ranges includes lowland forest at 300 m on Eastern side, sub-montane

forests and montane forests. Tree species composition varies considerably, but species such as

Khaya anthotheca, Milicia excelsa are found in the lowlands and others such as Myrianthus
holstii, Albizia gummifera, Allanblackia stuhlmannii and Newtonia buchananii are dominant

at high altitudes [37,44].

Fig 1. Map of the study area showing Eastern Arc mountains, Amani and Nilo nature forest reserve sites. The Eastern Arc layer source is from [35].

https://doi.org/10.1371/journal.pone.0282528.g001

PLOS ONE Tree species composition along environmental and disturbance gradients

PLOS ONE | https://doi.org/10.1371/journal.pone.0282528 March 8, 2023 3 / 19

https://doi.org/10.1371/journal.pone.0282528.g001
https://doi.org/10.1371/journal.pone.0282528


Sampling design

We utilized the existing systematic 450 by 900 m grids of east-west and north-south transect

method in 1999–2000 by Frontier Tanzania in each of the two nature forest reserves [44].

The grids were intended for surveying the flora and fauna where 182 rectangular plots were

established in Amani NFR and 122 rectangular plots of 20 x 50 were established in Nilo

NFR.

In this study, we measured a sub -sample of 30 circular plots of 18 m radius within the

Frontier grids in Amani NFR in 2017/18 as described in [45]. Sixteen (16) plots were on the

exact position as in the frontier plots, with difference in shape and sizes only, 14 plots were

established along the grid lines of Frontier plots and located exactly midway between two exist-

ing Frontier plots. Thus, the inter plot distance between our plots was 225 rather than 450m.

The 30 plots covered an elevation range from 200 to 1000 m above sea level so that both the

lowland forests (<800 m above sea level) and the sub-mountain forests (>800 m above sea

level) were covered [37].

In Nilo NFR 28, circular plots of 18 m radius were established exactly on the same location

with the existing Frontier plots. Same grids were used only with difference in plot size and shapes,

thus the inter plot distance was 450m. We decided to use circular plots, because they are easier to

establish in the field, and because they have one dimension (i.e., radius) that defines the plot

boundary. Therefore, in total we had 58 field plots measured in the two nature forest reserves.

Data collection

Field data. Existing plot coordinate’s location established by [45] were used to navigate to

the center of field plots in Amani NFR using handheld GPS. Similarly, in Nilo NFR the plot

coordinate’s locations as reported by [46] for the Frontier were used to locate the center posi-

tion of the plots. Field data were collected in Dec 2017 and May 2018 in Amani NFR and Nilo

NFR respectively. As stated above, circular plots with a radius of 18 m were established on

each of the two-nature forest reserves. On each plot, all trees with diameter at breast height

(dbh) greater or equal to 5cm were measured and recorded for dbh, scientific and local name.

Plant materials were collected for further identification or confirmation at the Tanzania

National Herbarium. A caliper was used to measure dbh, however for larger and trunked trees

diameter tape was used.

Forest tree species composition and dominance. To determine the species composition

of the forests, we summarized the species datasets into list of all species recorded and their

abundance values.

The dominance of tree species was determined from the estimation of their species impor-

tance value index (SIVI).The Importance Values Index (IVI), indicates the ecological impor-

tance of a tree species and hence the dominance [20]. The Importance Value Index (IVI) for

each species was computed as the sum of relative density, relative dominance and relative fre-

quency of the species in each plot following [47].

Environmental data. To estimate the influence of environmental factors on tree species,

we used information on topography, climate and soil factors.

Topographic factors including; elevation, slope and aspect were extracted from the raster

layer derived from the SRTM 30 m-based DEM-USGS Earth Explorer (https://earthexplorer.

usgs.gov/). A total of 58 points consisting of plot locations were imported into QGIS 3.22,

where a spatial analyst tool of the QGIS was employed to obtain values of aspect, elevation and

slope as well as the Topographic Position Index (TPI). Climatic data was downloaded from

WorldClim site (https://www.worldclim.org) with a 30 arc seconds resolution and soil data

was extracted from the Re-gridded Harmonized World Soil Database: ISRIC Data Hub
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(International Soil Reference and Information Centre) https://data.isric.org/geonetwork/srv/

eng/catalog.search#/home. For each plot, values for all spatially interpolated climate and soil

predictors were extracted using “raster package” in R software sampled using the coordinates

of the plot center and averaged across plots per site (Table 1).

Disturbance data. The degree of forest accessibility was included as proxy for anthropo-

genic disturbances [29,48]. Likewise, the presence of a conservation office building in the NFR

was regarded as a factor for the decrease in intensity of human disturbances.

To quantify the influence of disturbance on tree species composition, we used distance

from each field sampling plot to the nearest primary, secondary, or tertiary road, as well as the

distance to the nearest city, village, or town and the distance from the plot to the conservators’

office. We obtained spatial data for roads and villages as shapefiles using road and settlement

vector data from OpenStreetMap (http://download.geofabrik.de/africa/tanzania.html). The

positions of the conservators’ offices were digitized from high resolution base-maps of the

areas. The distances were obtained by calculating the Cartesian distance (in kilometers), using

the gDistance function within the rgeos package of R statistical software. The function returns

the minimum Cartesian distance between the two points (plots to the road or villages).

Data analysis

Dominant tree species composition. We used detrended correspondence analysis

(DCA) to detect the magnitude of the ecological gradient in our species composition matrix

and hence the constrained ordination to be used [49,50]. The DCA results showed an axis

length greater than 4.0 in both study sites, suggesting that the data is heterogeneous. We there-

fore used Canonical Correspondence analysis (CCA) [51] to determine the influence of envi-

ronmental and disturbance on dominant tree species and community types.

Table 1. The environmental and disturbance factors (Mean ± SD) within the tropical sub -montane forests of East Usambara, Tanzania. The bolded factors signifi-

cantly explained species composition.

Factors Variables Codes Mean SD Min Max

Soil pH pH 5.398 0.17 5.00 6.00

Organic carbon OC 15.88 5.24 6.00 30.00

Electrical conductivity EC 0.67 0.30 0.13 1.49

Cation exchange capacity CEC 12.17 2.82 8.00 20.00

Available water holding capacity AWHC 26.83 1.39 24.00 30.00

Bulk density BD 1,364.48 54.55 1,260.00 1,490.00

Potassium K 153.83 45.12 72.00 265.00

Total available Nitrogen N 2,023.07 211.57 1,355.00 2,682.00

Sodium Na 217.71 42.79 179.00 381.00

Phosphorous P 849.74 204.95 428.00 1,299.00

Climatic Mean Annual Temperature MAT 21.82 1.42 20.14 24.48

Temperature seasonality TS 164.31 12.07 140.53 186.86

Mean Annual precipitation MAP 1,337.71 147.32 1,073.00 1,589.00

Precipitation seasonality PS 57.57 2.33 53.57 62.31

Topographic Aspect As 164.32 88.08 3.57 355.10

Elevation El 704.36 301.46 222.65 1,120.00

Slope Sl 29.33 16.52 3.58 70.57

Topographical position Index TPI 0.47 2.81 -4.74 9.44

Disturbance Distance to the road Rd 6,378.83 4,355.10 19.08 12,385.68

Distance to the villages Vl 1,561.55 634.05 461.22 3,384.29

Distance to conservation offices HQDist 4,538.13 3,014.47 117.93 9,871.30

https://doi.org/10.1371/journal.pone.0282528.t001
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Prior to CCA, we checked for collinearity among variables on the basis of Pearson correla-

tion (r) and Variance Inflation Factor (VIF). Predictor variables with a VIF value greater than

ten (10)) [52] and r> 0.7 [20] were considered to be high collinear [51] and were trimmed out

from the list of predictors. Species abundance data were log-transformed to meet assumptions

of multivariate normality [50]. Species that occurred in less than five plots were considered to

have no major ecological significance (rare species) and were removed from the matrix [53].

Stepwise automatic forward selection was used to identify significant explanatory variables to

be constrained in multivariate analysis [50]. The selected explanatory variables were then con-

strained against the tree species and community composition using CCA. The effect of the

obtained explanatory variables on tree species composition in CCA model was determined

using the Monte Carlo test with 999 unrestricted permutations [49] at 95% confidence

interval.

Community composition. Similar communities were identified using cluster analysis.

First, we computed the Bray–Curtis’s distance matrix using the abundance data and then, per-

formed hierarchical Ward’s minimum variance clustering on the Bray–Curtis’s distance

matrix. The decision on the number of clusters was based on Silhouette validation technique

using ‘Nbclust package’ [54]. Indicator species analysis was performed to identify significant

dominant species of the communities, using package labdsv. Then, community types were

named after the two most dominant species [43] based on high synoptic cover abundance val-

ues (mean frequency multiplied by mean cover-abundance), following [49] (S1 Appendix).

Additionally, the community types obtained was subjected to ANOVA to describe environ-

mental and disturbance differences among individual clusters. For the explanatory variables

which were significant, pairwise differences tested among clusters; using Tukey HSD compari-

son was done.

Tree species composition variance partitioning. Explanatory variables that were signifi-

cant in explaining variability in tree species composition were retained and considered for sub-

sequent variance partitioning analysis. The significant explanatory variables were categorized

into two main groups i.e., environmental and disturbance groups, then sub-grouped into four

sets of climatic, topographic, edaphic and disturbance. We performed variance partitioning by

partial CCA to determine independent and joint contributions of each group predictor vari-

ables to explain variation in species composition. The proportion of variation explained was

given as the adjusted R2 of the explanatory variable in the CCA, as unbiased estimates of the

variation [41]. DCA and CCA were performed by the ‘vegan’ package and variation partition-

ing with CCA by the ‘varpart’ package in the R software (v. 4.1.2) [21].

Results

Trees species and community structure

Tree species composition structure. A total of 2910 individuals were recorded belonging

to 174 species, 128 genera, and 46 families. The most dominant families with a high number of

species were: Leguminosae (28), Rubiaceae (19), Moraceaea (13), Malvaceae (11) and Sapota-

ceae (10). The most common genera with the highest number of trees were Albizia (5), Ficus

(5) and Celtis (5). Also, the most dominant species, in terms of IVI were Leptonychia usambar-
ensis K. Schum(151.8), Cephalosphaera usambarensis (Warb.) Warb. (114.6), Antiaris toxicaria
Lesch (95.2) and Maesopsis eminii Engl. (85.7) (S1 Appendix).

Our results show that, 28% of variation of dominant tree species composition was explained

by the environmental and disturbance factors. The overall CCA model (χ2 = 0.58, P = 0.001),

as well as the first two ordination axes were statistically significant (P = 0.001), showing that

the observed patterns differed from a random relationship. The first two ordinations
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accounted for 15.9% of the total variation, having eigenvalues of 0.58 and 0.21 respectively.

The first ordination axis was significantly correlated with elevation (El), mean Annual Precipi-

tation (MAP) gradients, pH and Temperature seasonality (TS), while the second canonical

axis showed strong significant correlations (P<0.05) with distance to the nearest road (Rd)

and villages (Vl) (Fig 2).

The biplots indicated that, on axis 1, species like Isoberlinia scheffleri (Harms) Greenway,

Alsodeiopsis schumannii (Engl.) Engl., Parinari excelsa Sabine have positive scores while spe-

cies like Pouteria alnifolia (Baker) Roberty, Celtis mildbraedii Engl. and Lecaniodiscus fraxini-
folia Baker have high negative scores and are highly significantly influenced by Elevation and

Precipitation (MAP). On axis 2, species like; Trichilia dregeana Sond., Alangium chinense
(Lour.) Harms and Ficus sur Forssk. had positive scores and are positively influenced by pres-

sure of nearest roads (Fig 2).

Community composition. We identified five distinct significant tree species communities

(p< 0.001) in the study area (Fig 3). Most of the species were shared across communities;

however each community is characterized by a distinct set of dominant species (S1 Appendix).

The community composition structure in the two forests were influenced by elevation (El),

Phosphorous (P), pH, mean annual precipitation (MAP), temperature seasonality (TS), nearest

distance to the road (Rd) and villages (Vl). The Isoberlinia schefflera- Sorindeia madagascariensis
forest community is significantly influenced by pressures from nearest roads (P = 0.001), Taber-
naemontana ventricose-Leptonychia usambarensis and Ficus sur- Myrianthus holstii by pH (P

<0.05), while Artocarpus heterophyllus—Lecaniodiscus fraxinifolia forest community is influ-

enced by mean annual precipitation, elevation and temperature seasonality (P<0.05) (Fig 4).

Tree communities’ compositions are influenced by elevation (El), Phosphorous (P), pH,

mean annual precipitation (MAP), temperature seasonality (TS), disturbance pressure from

nearest road (Rd) and villages (Vl). The tree communities occupy significant different eleva-

tion gradients (P<0.05) (Fig 5A). Likewise, there is significance difference of the mean annual

precipitation received by the communities with an exception of Artocarpus heterophyllus—
Lecaniodiscus fraxinifolia (Arhe.Lefr) and Tabernaemontana ventricosa-Leptonychia usambar-
ensis (Tave.Leus) communities (Fig 5B). There is no significant difference in the influence of

disturbance pressures from the nearest villages (Vl) to tree communities (P> 0.05).

Tree species composition variance partitioning

Results showed that environmental factors (14.5%) explained variability in tree species compo-

sition five times more than the potential disturbance factors (2.5%). Overall, the climate factors

accounted for 6.95% of the variation in tree species composition (Table 2). The variation in

species composition is also a result of interaction of multitude of these factors. Example; the

interaction between climate and topography (6.3%) and climate, topography and soil (6.5%)

explained high variation in species composition (Fig 6).

Discussion

Tree species community structure

Divergent distribution patterns of species and community composition of mountain ecosys-

tems are influenced by dramatic changes in environmental conditions over short altitudinal

distance [33,49,55,56]. Nevertheless, human exploitation may be imposing constraints that

result in environmental modification [57] causing a shift in species range [58] and thus influ-

encing species composition [59]. Our study found that tree species and community patterns

are determined by climate, topography, soil and disturbance pressures that exhibit heterogene-

ity over the sub-montane forest of East Usambara.
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Fig 2. Canonical correspondence analysis diagram showing the ordination of dominant species represented and their correlation with

environmental and disturbance variables in the sub-tropical montane forest plots. Canonical correspondence analysis biplot of Amani and Nilo

FR species distribution (blue dots) based on tree species abundance. The gray axes vectors indicate the significant explanatory variables in their

abbreviated form: El = Elevation, TS = Temperature seasonality, MAP = Mean Annual precipitation, P = Soil phosphorus, Rd = Distance to the road

and Vl = Distance to the villages. We also used abbreviated species scientific names of each tree by using first two letters each from genus and species;

Al.ch = Alangium chinense (Lour.) Harms, Al.gu = Albizia gummifera (J.F.Gmel.) C.A.Sm., Al.me = Allophylus melliodorus Gilg ex Radlk., Al.
st = Allanblackia stuhlmannii (Engl.) Engl., Al.sc = Alsodeiopsis schumannii (Engl.) Engl., An.ku = Annickia kummeriae (Engl. & Diels) Setten & Maas,
An.gr = Anthocleista grandiflora Gilg, An.me = Antidesma membranaceum Müll.Arg. An.to = Antiaris toxicaria Lesch., Ar.he = Artocarpus
heterophyllus Lam, Bl.un = Blighia unijugata Baker, Ce.go = Celtis gomphophylla Baker, Ce.mi = Celtis mildbraedii Engl., Ce.us = Cephalosphaera
usambarensis (Warb.) Warb., Ch.pe = Chrysophyllum perpulchrum Mildbr. ex Hutch. & Dalziel, Dr.ge = Drypetes gerrardii Hutch., En.

us = Englerodendron usambarense Harms, Er.su = Erythrophleum suaveolens (Guill. & Perr.) Brenan, Fi.ex = Ficus exasperata Vahl, Fi.su = Ficus sur
Forssk., Fu.af = Funtumia africana (Benth.) Stapf, Gr.su = Greenwayodendron suaveolens (Engl. & Diels) Verdc., Is.sc = Isoberlinia scheffleri (Harms)
Greenway, Le.fr = Lecaniodiscus fraxinifolia Baker, Le.us = Leptonychia usambarensis K. Schum. Ma.ca = Macaranga capensis (Baill.) Sim, Ma.
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Our results showed that elevation significantly influences differences in species communi-

ties, similar to mean annual precipitation and temperature seasonality as shown in the CCA

(Fig 5), suggesting correlations among topographic, elevation and precipitation [60] perhaps

due to adiabatic decrease of temperature with elevation [61] and elevation-dependent wetting

(EDWE) [62] phenomenon. Nevertheless, elevation is linked to variation in humidity [59] and

soil moisture [9], that may indirectly affect tree nutrient availability [43] and other factors,

which affecting tree species establishment, and their community composition [6,63]. Several

studies have shown that elevation-temperature relationship significantly influenced the physi-

ological attributes of plant species [59].

Our study shows similar biogeographical patterns of communities where, Artorcarpus het-
erophyllus-Lecaniodiscus franxinifolia and Isoberlinia schefflera-Sorindeia madagascariensis
communities, occupying lower to mid- elevation have higher species richness in comparison

to other communities occupying high elevations. Studies suggest that, middle to low elevation

zones have relatively mild climate and favorable nutritional conditions [64], meaning which

means high chance for any species’ growth and survival. Many of the species in the forests are

limited by extremities in temperatures [24,59] as well as precipitation [65]. Seasonal variation

in temperature across most tropical forests, maybe minor [66], but recent studies suggest that

small changes in temperature are likely to affect species distribution patterns according to

their species physiological drought tolerance [65,67,68]. Climatic conditions can thus exert

selective pressure on composition species [8], given that some tree species may not prefer

areas of high elevation because of low temperatures [55,69]. Thus, elevation can be used as a

proxy for understanding tree species adaptation to climate change [56].

Furthermore, we found that species and community composition are significantly

explained by the variation of pH and phosphorous (P) nutrients (Figs 2 and 4). Our study sites

occupy areas of acidic to slightly acidic (i.e. pH between 5 and 6). Similar to [70], our results

suggests that soil pH is a substantial, driver of species composition and distribution in East

Usambara. Others studies, also show that soil pH has the ability to influence tree species nutri-

ent uptake and their ecological behavior at different localities. [70–72]. Moreover, we found

that soil phosphorus significantly (P< 0.05) influences the variability of the tree species and

communities. Regardless of phosphorus being important for regulating plant primary produc-

tivity, and other biological processes such root allocation and growth [73–75], it is limited to

plants due to its low solubility and the sorption processes in soils [72]. Nevertheless, soil P

availability can be affected by direct and indirect climatic processes through sorption and des-

ortion [76]. The relationship between soil properties and climate can thus never be inseparable

[9,22] as well as topography, as there’s evidently reports of elevation-climate dependency

[43,59]. This suggests that any huge changes to the ecosystem may have knock- on effects on

the whole forest system.

We found that disturbance had a significant influence on species composition in sub-tropi-

cal forest of East Usambara. Isoberlinia schefflera-Sorindeia madagascariensis communities for-

est community was influenced by disturbance factors and is the richest (59 species), while

Tabernaemontana ventricose-Leptonychia usambarensis forest community is less affected by

em = Maesopsis eminii Engl., Ma.lu = Markhamia lutea (Benth.) K.Schum., Me.in = Mesogyne insignis Engl., My.ho = Myrianthus holstii Engl., Ne.

bu = Newtonia buchananii (Baker) G.C.C.Gilbert & Boutiqu, Pa.ex = Parinari excelsa Sabine, Po.al = Pouteria alnifolia (Baker) Roberty, Qu.

un = Quassia undulata (Guill. & Perr.) D.Dietr. Ri.he = Ricinodendron heudelotii (Baill.) Heckel, Ro.ma = Rothmannia manganjae (Hiern) Keay, Sh.

el = Shirakiopsis elliptica (Hochst.) Esser, So.ma = Sorindeia madagascariensis Thouars ex DC., St.sc = Strombosia scheffleri Engl., Sy.ce = Synsepalum
cerasiferum (Welw.) T.D.Penn., Sy.ms = Synsepalum msolo (Engl.) T.D.Penn., Ta.pa = Tabernaemontana pachysiphon Stapf, Ta.

ve = Tabernaemontana ventricosa Hochst. ex A.DC., Ta.ni = Tarenna nigrescens (Hook.f.) Hiern, Tr.dr = Trichilia dregeana Sond., Tr.
ma = Trilepisium madagascariense DC., Tr.my = Tricalysia myrtifolia S.Moore, Xy.mo = Xymalos monospora (Harv.) Baill.

https://doi.org/10.1371/journal.pone.0282528.g002
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disturbances and had the least tree species richness (24 species). The patterns of species rich-

ness, corresponds to the intermediate disturbance hypothesis, which suggests that local species

richness is maximized when ecological disturbance is neither too rare nor too frequent and

not too intense [77]. We also found that a dominant species like Maesopsis eminii Engl, a light

Fig 3. Dendrogram of hierarchical clustering using similarity ratio showing four community types in different sites (plot 1–59) of the study

area (Ward’s method, Bray-Curtis distance) across Amani and Nilo nature forest reserve in sub-tropical East Usambara montane forest of

Eastern Arc. The communities are named by using number of communities denoted as (Cn) and they are named after by two dominant species: C1

= Tabernaemontana ventricosa-Leptonychia usambarensis, C2 = Ficus sur- Myrianthus holstii, C3 = Artocarpus heterophyllus-Lecaniodiscus
fraxinifolia and C4 = Isoberlinia schefflera- Sorindeia madagascariensis communities (S1 Appendix).

https://doi.org/10.1371/journal.pone.0282528.g003
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-demanding pioneer tree species, was influenced by disturbance i.e., adjacent to villages (Fig

2). It is evidently supported that disturbance pressures to the forests may exert effects on the

natural environment, thus changing the site condition and species habitat, enabling conditions

for new species to emerge and/or diminish the existing species [33]. Light demanding species

like M. eminii Engl have mostly been in high proportion in disturbances gaps, due to available

maximum light necessary for triggering their establishment and growth [78], but responses to

disturbance pressures vary among tree species, depending on their ability to colonize and to

compete [79].

Tree species composition variance partitioning

The results of partial CCA (pCCA) revealed that species composition was defined best by cli-

mate and disturbance factors, with most of the variation being explained by the climate

Fig 4. Canonical correspondence analysis diagram displaying the ordination of community types represented and

their correlation with environmental and disturbance variables, indicating abundance relationships in sub-

tropical East Usambara montane forest of Eastern Arc mountains. Communities: Tave.Leus = Tabernaemontana
ventricosa- Leptonychia usambarensis, Arhe.Lefr = Artocarpus heterophyllus-Lecaniodiscus fraxinifolia, Fisu.Myho =

Ficus sur- Myrianthus holstii and Isoberlinia schefflera- Sorindeia madagascariensis communities (S1 Appendix).

https://doi.org/10.1371/journal.pone.0282528.g004
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variable similar to [79]. Our results support the argument that mountain tree communities are

sensitive to climate and, thus, able to reveal its effects sooner than others [56]. Variation of spe-

cies is also explained by interaction of factors, including: Climate, topography and soil (6.5%),

as well as climate and topography (6.3%) (Fig 6). This confirms that species composition is a

Fig 5. Boxplot showing difference among individual communities with respect to environmental and disturbance factors. The horizontal line

crossing the box in the center represents the median; the box represents the 25th and the 75th percentiles. The vertical line outside the box represents

the minimum and maximum values. Difference in letters (a, b, c, d) signifies that the communities are different in the specified factor. Communities:

1 = Tabernaemontana ventricosa-Leptonychia usambarensis, 2 = Ficus sur- Myrianthus holstii, 3 = Artocarpus heterophyllus-Lecaniodiscus

fraxinifolia, 4 = Isoberlinia schefflera- Sorindeia madagascariensis.

https://doi.org/10.1371/journal.pone.0282528.g005
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Table 2. CCA variation partitioning (%) on overall plant species composition of Tropical sub- montane forests of East Usambara, Northern Tanzania.

Effect and main variable Covariables Variation explained (%) F-value P-value

Total effect (Environmental and disturbance factors) 28.90 8.18 0.001

Partial effect

Environmental Anthropogenic pressure 14.50 1.93 0.001

Disturbance Environmental 2.50 2.75 0.001

Soil Climate, Topography and Anthropogenic pressure 4.80 1.63 0.009

Topography Soil, Climate and Anthropogenic pressures 2.30 1.59 0.030

Climate Soil, Topography and Anthropogenic pressure 6.95 2.01 0.001

Anthropogenic pressure Soil, Topography and Climate 5.80 1.80 0.001

https://doi.org/10.1371/journal.pone.0282528.t002

Fig 6. The Venn diagram showing variation partitioning results (partial CCA model) and the contribution of the four studied environmental and

disturbance variable groups (i.e., climatic, soil, topography, and disturbance) that drive the plant species distribution. The proportion of variance in tree

species composition explained by environmental and disturbance factors. The values represent adjusted R2 (%) of independent and shared effects by 4 the

factors.

https://doi.org/10.1371/journal.pone.0282528.g006
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result of combination of multiple factors [20]. Although the influences among the environ-

mental and disturbance variables covaried, neither the effect of one variable was entirely nested

within the other (% variation of each individual variable >1). This indicates that the individual

contribution of each factor has important and independent effects [21] on community struc-

ture in a wide variety of tropical forest communities [74].

Next to climate (mean annual precipitation and temperature seasonality), disturbance

explained the most variability of species composition. We expect that the protected reserves

are supposed to be free from outside human intrusions, but the protective efficiency of the pro-

tected forest is still in question, as anthropogenic activities continue to pose threats to the for-

est reserves [30,31]. Several studies [19,33,79] have recognized the importance of assessing

human activities in shaping the floristic composition of the forests. Our study used proxy val-

ues of nearest distance to the roads and villages, which indicated that human-induced threats

such as. selective logging, [26,38], had significant influence on the variability in species and

community composition. Chronic disturbance generated by anthropogenic activities normally

gives rise to alterations in habitat conditions through the modification of physical structure of

the forest [18].

Conclusion

Understanding the influence of environmental and disturbance factors on tree species domi-

nance and community composition in an ecosystem, is important to inform conservation of

existing forest structures. Our findings suggest that there is a strong relationship among forest

structure, environmental and disturbances factors. The large and significant variation in tree

species and community patterns explained by environmental factors suggests a need for site-

specific assessment of environmental properties for biodiversity conservation plans. We also

showed that, human induced disturbances from easy road access and villages near to forests

may influence tree species composition. The effects of site condition modification as a result of

human induced disturbance vary with location and existence of flora composition depending

on the ability of tree species to adapt either at small scale or massive changes. Human induced

disturbances should be discouraged in order to maintain species composition and encourage

continuous monitoring and sustainable use of forest community structure. Likewise, under-

standing tree species composition and community structure patterns and their underlying

environmental factors is worthwhile when considering conservation of montane sub-tropical

forests. Thus, our findings may be useful for formulation of forest restorationpolicy interven-

tions to sustain the tree species composition and the functioning in the subtropical montane

forests of Eastern Usambara Mountain and similar ecosystems elsewhere.

Supporting information

S1 Appendix. List of dominant species in Sub-tropical forest of Eastern Arc montane for-

ests, Tanzania. The bolded species are indicator species with highest indicator values which

were used for naming the communities in Sub-tropical East Usambara montane forest of East-

ern Arc mountains, Tanzania. IVI = Importance value index and CCA1 and

CCA2 = Canonical correspondence analysis showing values for species along axis 1 and 2.

(PDF)
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