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Abstract 
Tesha, D.L., Mauya, E.W., Madundo, S.D., Emily, C.J., 2023. Role of topography, soil and climate on 
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logica, 50 (2): 105–118.

Understanding the variables that determine the variation in forest species composition and diversity in trop-
ical montane systems remains a topic for discussion in plant ecology. This is especially true in areas where 
the topography is complex and forests are vulnerable to human activity. In this study, a set of topographic, 
soil, and climatic variables were used to determine their effects on the composition and diversity patterns 
of two forests in the West Usambara Mountains (Tanzania). Two-phase systematic sampling was used to 
collect vegetation data from 159 sample plots distributed across the forests. An agglomerative hierarchical 
clustering method was used for forest community classification, and indicator species analysis was used 
to determine the species significantly associated with forest communities. The influence of environmental 
variables on forest communities was analysed using canonical correspondence analysis (CCA). Finally, we 
evaluated diversity patterns by comparing diversity indices (Shannon-Wiener diversity index, evenness, 
and richness) and beta diversity processes. In total, 7,767 individual trees belonged to 183 species, 132 
genera, and 66 families were quantified. We found that (i) the forests of West Usambara can be divided into 
three different forest communities; (ii) each forest community has a specific set of topographical, soil, and 
climate variables; (iii) there are significant differences in Shannon diversity and richness indices among 
communities; and (iv) community composition is mostly influenced by species turnover than by species 
nestedness. Our study revealed the importance of considering a set of environmental variables related to 
climate, soil, and topography to understand the variation in the composition and diversity of forest commu-
nities in tropical montane forests.
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Introduction

Tropical montane forests (TMFs) are important compo-
nents of global biodiversity hotspots (Mata-Guel et al., 

2023). They are characterized by their unique composition 
of flora and fauna, complex ecological interactions, and 
high levels of endemism (Brambach et al., 2017). TMFs 
occur at elevations between 1,000 and 4,000 m above sea 
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level in tropical regions worldwide, where they represent 
a critical resource for local communities and significantly 
contribute to global carbon storage (Iwashita et al., 2013; 
Spracklen and Righelato, 2014). The ecological com-
plexity of TMFs is attributed to a combination of factors 
including topographic heterogeneity (Jiang et al., 2023), 
climatic variability (Trew and Maclean, 2021), and high 
levels of endemism (Nery et al., 2023). These factors cre-
ate a mosaic of microhabitats, each with distinct biotic and 
abiotic conditions, resulting in high levels of diversity and 
endemism at multiple scales (Noguerales et al., 2021; Ti-
etje et al., 2022). The unique environmental conditions in 
TMFs have also led to the evolution of specialized species 
and communities, making them important sites for study-
ing speciation and evolutionary processes (Trew and Ma-
clean, 2021; Vasconcelos et al., 2022).
	 However, understanding the environmental vari-
ables that influence forest composition and diversity in 
TMFs remains a topic of discussion in plant ecology (Di-
ogo et al., 2021; Hai et al., 2021; Hofhansl et al., 2020). 
Multiscale factors are thought to be important for deter-
mining forest composition and diversity patterns across 
these forests (Barczyk et al., 2023). Regional (e.g., cli-
mate) and local factors, such as topography and soil, are 
important drivers of forest composition and diversity in 
montane forests (Homeier and Leuschner, 2021; Li et 
al., 2020). For example, topography creates a wide range 
of microclimates that influence the distribution and abun-
dance of various plant species (Macek et al., 2019; Old-
father and Ackerly, 2019). Soil type and chemistry also 
play critical roles in shaping the composition of TMFs, 
with different plant species adapted to specific soil types 
and their associated nutrient cycles (Dantas de Paula et 
al., 2021).
	 In addition to these factors, climate variability is a 
critical driver of forest composition and diversity in TMFs 
(Boyle et al., 2021), and is expected to become increas-
ingly important in the face of ongoing climate change 
(Ntirugulirwa et al., 2023). Climate change is projected 
to result in warmer temperatures and altered precipitation 
patterns in tropical regions, leading to changes in moisture 
availability and nutrient cycling, which will have cascad-
ing effects on TMFs (Veintimilla et al., 2019). Therefore, 
it is important to understand how TMFs respond and adapt 
to changing climatic conditions, and how these changes 
may affect forest composition and diversity in the future 
(Salinas et al., 2021).
	 Although previous studies have explored the in-
fluence of individual environmental variables on mon-
tane forest composition and diversity (Báez et al., 2022; 
Bunyan et al., 2015; Fahey et al., 2016; Homeier, 2010; 
Lakkana et al., 2002; Lippok et al., 2014; Rawat et al., 
2020; Takyu et al., 2002; Zhang et al., 2016), there is a 
lack of comprehensive research that incorporates the inter-
active effects of climate, soil, and topography. The Eastern 
Arc Mountain forests are biodiversity hotspots, renowned 
for their species richness, endemism, and unique ecolog-
ical characteristics (Dimitrov et al., 2012; Yessoufou et 
al., 2012). Within the Eastern Arc Mountain forests, the 
West Usambara Montane Forests offer an ideal setting for 
ecological research, with diverse forest communities and 

a wealth of endemic species (Huang et al., 2003; Rod-
gers and Homewood, 1982; Tallents et al., 2005). The 
West Usambara Montane Forests provide a condensed yet 
representative ecosystem within the Eastern Arc Mountain 
forests, making them an excellent study site for investi-
gating the influences of climate, soil, and topography on 
forest composition and diversity. Therefore, this study 
aims to address this research gap by focusing on the West 
Usambara mountain forests and pursuing the following 
objectives: 1) to identify different forest communities in 
the study area, 2) to evaluate the influences of topography, 
soil, and climate on forest community composition, and 3) 
to determine the patterns of alpha diversity between forest 
communities and the underlying processes contributing 
to the beta diversity of these communities. It is import-
ant to note that this study intentionally excluded human 
disturbance as a factor in isolating the specific effects of 
abiotic factors. By focusing solely on climate, soil, and to-
pography, we aimed to gain a clearer understanding of the 
natural drivers shaping forest composition and diversity in 
the absence of human-induced influences. This approach 
allowed us to assess the direct impacts of abiotic factors on 
the West Usambara mountain forests and provide valuable 
insights into their ecological dynamics and conservation 
needs.

Materials and methods

Study area

The West Usambara Montane Forests are located mainly 
in the Lushoto District, with a smaller area in the Korogwe 
District in Tanzania. These forests are confined to the Us-
ambara Mountains, which consist of two highland blocks: 
East Usambara rising up to 1,484 m and West Usambara 
rising to nearly 2,294 m. These blocks are part of the East-
ern Arc Mountains (EAMs), a group of isolated mountains 
stretching from Southeast Kenya to the Makambako Gap 
in south-central Tanzania (Fig. 1). The study was carried 
out in two forests, the Magamba Nature Forest Reserve 
(MNFR) and the Shagayu Forest Reserve (SFR) (Fig. 1), 
both located in the West Usambara Mountain block. The 
MNFR, covering an area of 9,283 ha, is situated at 4°40 S 
and 38°15’E, with an altitude ranging from 1,650 to 2,300 
m above sea level, a mean annual rainfall of 1,200 mm per 
year, and an annual temperature ranging from 15 °C to 30 
°C. The SFR, with an area of 7,830 ha and is located at 
4°31’0’’S and 38°16’59’’E, has an elevation of approxi-
mately 2,098 m asl and a mean annual rainfall of 1,000 
mm per year (Lovett, 1996).

Vegetation sampling and plant identification

A two-phase, systematic sampling design was used in this 
study. Grids (225 × 450 m in the MNFR and 350 × 700 
m in the SFR) were established during the first phase, 
with each intersection being a sampling plot. During the 
field expedition, second-phase plots were selected based 
on a careful consideration of logistical and practical con-
straints, including time, resources, and the accessibility 
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Fig. 1. Shagayu forest (7,830 ha) and Magamba nature forest reserves (9,283 ha) and their localizations within the Eastern Arc 
Mountains of Tanzania.

of the study sites. A total of 159 circular field-sampling 
plots (radius = 15 m) were established across both forests 
(MNFR = 55; SFR = 105). In each plot, individual trees 
with a diameter at breast height (DBH) ≥ 5 cm were re-
corded and identified at the species level. The geographi-
cal location and elevation were also recorded using a hand-
held GPS (Garmin 73). For data collection, only trees were 
measured, whereas other plants, such as climbers, shrubs, 
and herbs, were excluded.

Environmental data

A total of 28 environmental variables, representing topo-
graphic (4), climate (19), and soil (5) variables, were used 
to determine the linkage between species composition and 
diversity as explanatory variables (Supplementary Table 
S1). Apart from elevation, the other topographical vari-
ables (slope, aspect, and topographic wetness index) were 
derived from a digital elevation model downloaded from 
https://glovis.usgs.com. The bioclimatic variables were 
extracted from global high resolution (~ 1 km2) database 
https://www.worldclim.org. High resolution (~ 250 m) soil 
variables were downloaded from https://www.soilgrids.
org. Pearson’s correlation coefficient (r) and variance infla-
tion factor (VIF) were used to assess collinearity between 
environmental variables. In cases of high collinearity (r ≥ 
0.7, VIF ≥ 10), the environmental variable that showed a 
greater relationship with the explanatory variable was re-
tained (Lolila et al., 2023).

Statistical analyses

All statistical analyses were carried out using R v.4.2.1 
(R Core Team, 2022). Species area curves were generated 
using the R package ‘biodiversityR’ (Kindt and Kindt, 
2023), following the method proposed by Preston (1962). 
In this study, species area curves were used to examine the 
relationship between sampling effort and number of spe-
cies found in each forest. To classify the recorded tree spe-
cies and sampling sites into different forest communities, 
we used agglomerative hierarchical clustering analysis 
with the Ward linkage method. The optimal number of for-
est communities was determined using a consensus-based 
algorithm carried out with the ‘parameters’ package (Lü-
decke et al., 2023). Tree species that were significantly 
associated with the sampling plots for each forest com-
munity were identified using indicator species analysis 
via the ‘indicspecies’ package (De Caceres et al., 2014). 
Canonical correspondence analysis ordination (CCA) was 
then conducted using matrices of species biomass and re-
tained environmental variables to investigate the influence 
of environmental variables on indicator tree species distri-
bution in each forest community. The axis length (> 4.0) 
of a detrended correspondence analysis (DCA) was used 
to identify the suitable constrained ordination method (i.e. 
CCA). Stepwise forward selection was performed during 
the CCA ordination to identify significant environmental 
variables, which was carried out using the ‘vegan’ package 
(Oksanen et al., 2008). The Kruskal-Wallis test was used 
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to assess differences in environmental variables across the 
three forest communities. This non-parametric test was 
appropriate for our data as it did not meet the assumptions 
of normality and equal variances. The test was followed by 
post-hoc analysis using Dunn’s test, which allowed for the 
identification of significant differences within communities.
	 Alpha diversity indices, particularly the Shannon 
diversity index (H) (Shannon and Weaver, 1964), spe-
cies richness (S), and evenness (J) (Pielou, 1966), were 
also calculated for each forest community using the ‘veg-
an’ package in R (Oksanen et al., 2008). These metrics 
were used to compare the alpha diversity among the three 
forest communities. The use of these indices is important, 
as they provide a comprehensive understanding of the 
diversity within each forest community and can be used 
to compare diversity between different communities. To 
compare the diversity indices evaluated among the three 
communities, generalized linear models (GLM) were con-
ducted with a Gaussian error distribution, except for spe-
cies richness, in which a Poisson distribution was used. 
Pairwise comparisons among forest communities were 
conducted with estimated marginal means using the pack-
age ‘emmeans’ (Lenth et al., 2018). Additionally, we par-
titioned the Bray-Curtis coefficient (beta diversity, β) into 
two measurements to test if any of the forest communities 
are distinct in terms of species turnover (βturn) and nested-
ness (βnest) (Baselga, 2013) using the ‘betapart’ package 
(Baselga and Orme, 2012). These results were used to 
infer whether the differences in species composition were 
due to the segregation of different species in different for-
est communities (turnover) or because one forest commu-
nity had only a smaller amount of the same species as the 
other (nestedness). Therefore, if all forest communities have 
a large number of niche-specialist tree species, a higher βturn 
is expected. In contrast, when most of the tree species in a 
forest community are generalists (e.g., found across other 
forest communities), a higher βnest is expected.

Results

Sampling effort and forest communities

Data on 7,767 individual trees belonging to 183 species, 
132 genera, and 66 families were recorded across both 
forests. In Shagayu FR, 130 species from 108 genera and 
59 families were recorded, whereas in the Magamba NFR, 
there were a total of 113 species belonging to 89 genera and 
53 families. The species area curve (Fig. 2) showed that the 
maximum tree species richness was under-sampled for the 
Magamba NFR and adequately sampled for the Shagayu 
FR. It also revealed that the species richness for Shagayu 
FR reached the asymptote, whereas for Magamba NFR, the 
species richness was close to the asymptote.
	 Three forest communities were identified and de-
scribed using agglomerative hierarchical clustering anal-
ysis (Fig. 3). A total of 62 indicator species were identi-
fied in the present study. Forest communities were named 
based on the two most important tree species that occurred 
in the forest community, using their indicator value (IV) 
(Table S2). The three forest communities identified were 

Dombeya burgessiae-Cussonia spicata (DC), Aphloia 
theiformis-Syzygium cordatum (AS), and Newtonia bu-
chananii-Parinari excelsa (NP) (Fig. 3). 
	 D. burgessiae-C. spicata (DC) community: This 
forest community is distributed between 1,734–2,103 m 
asl. It is represented by 42 plots and has the lowest number 
of significant indicator species associated with the com-
munity (14). Dombeya burgessiae Gerrard ex Harv., Cus-
sonia spicata Thunb., Bersama abyssinica Fresen., Maesa 
lanceolata Forssk, and Nuxia floribunda Benth. were the 
five most dominant indicator species.
	 A. theiformis-S. cordatum (AS) community: This 
forest community is distributed over a wider elevation 
range of 1,683–2,105 m asl, showing a large overlap with 
that of DC. This community was the largest with 84 plots 
and was represented by the highest number of significant 
indicator species (29). Species indicative of this communi-
ty include Aphloia theiformis (Vahl) Benn. And Syzygium 
cordatum Hochst. ex Krauss, Macaranga kilimandschar-
ica Pax, Lasianthus kilimandscharicus K.Schum., and 
Ocotea usambarensis Engl.
	 N. buchananii-P. excelsa (NP) forest community: 
This forest community is distributed in the lowest eleva-
tion ranges of 1,425–1,883 m asl. It was the smallest of 
all communities and was represented by 33 plots and 19 
indicator species. Species representative of this commu-
nity are: Newtonia buchananii (Baker) G. C. C. Gilbert 
& Boutiqu, Parinari excelsa Sabine, Sorindeia madagas-
cariensis Thouars ex DC., Leptonychia usambarensis K. 
Schum., and Mimusops  kummel Bruce ex A. DC.

Forest communities and associated environmental 
variables

Constrained ordination using canonical correspondence 

Fig. 2. Species accumulation curves for Shagayu and Mag-
amba forest reserves. The curves depict the expected number 
of species as a function of sampled area, with the upper and 
lower bounds representing the 95% confidence intervals.
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Fig. 4. Canonical correspondence analysis (CCA) ordination diagram showing (a) relationship between environmental vari-
ables (elevation [E], soil nitrogen [N], precipitation in wettest month [PWM], annual precipitation [AP], topographic wetness 
index [TWI], soil pH [PH], and mean diurnal range [MDR]) and forest communities and (b) relationship between environ-
mental variables on indicator tree species distribution in the three forest communities: Dombeya burgessiae-Cussonia spicata 
(DC), Aphloia theiformis-Syzygium cordatum (AS), Newtonia buchananii-Parinari excelsa (NP). Tree species abbreviations 
are listed in Table S2.

Fig. 3. Hierarchical dendrogram expressing forest communities as a result of clustering analysis. Dashed rectangles indicate 
the forest communities. DC: Dombeyaburgessiae-Cussoniaspicata, AS: Aphloiatheiformis-Syzygiumcordatum, NP:  Newtoni-
abuchananii-Parinariexcelsa.

analysis (CCA) grouped all sites in a similar manner as 
in the cluster analysis (Fig. 4). The ordination diagram 
formed a set of linkages among different forest commu-
nities, along with environmental variables. The variables 
that were retained after performing the collinearity test 
with a VIF < 10 included topographical, soil, and climate 
variables, particularly elevation (E), soil nitrogen (N), pre-
cipitation in the wettest month (PWM), annual precipita-
tion (AP), topographic wetness index (TWI), soil pH (PH), 
and mean diurnal range (MDR). The CCA1 and CCA2 
axes accounted for 2.74% and 2.10% of the variance, re-

spectively, explained by these significant environmental 
variables. The results showed that the DC forest commu-
nity was significantly (P < 0.001) associated with E, N, 
and MDR. The AS community was significantly associ-
ated with N and PWM, whereas the NP community was 
significantly associated with TWI and AP.
	 All environmental variables (E, N, PWM, AP, 
TWI, PH, and MDR) differed significantly among forest 
communities (p < 0.05). The DC community had the high-
est elevation, N, and MDR values, followed in rank order 
by the AS and NP communities. In contrast, AP and TWI 
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were the highest in the NP community, lowest in DC, and 
intermediate in AS. Trends in PH were similar to those 
in N; however, the values were similar in the AS and NP 
communities. The AS community had the highest PWM, 
followed by the DC and NP communities, in rank order 
(Table 1).

Species diversity and pattern

Among the three diversity indices, only Shannon diversity 
(GLM χ 2 = 6.72, df = 2, p < 0.05) and species richness 
(GLM χ2 = 134.39, df = 2, p < 0.001) were found to be 
significantly different between forest communities. How-
ever, evenness showed no significant differences between 
forest communities (GLM χ2 = 0.08, df = 2, p-value > 
0.05) (Fig. 5). Shannon diversity was highest in AS (1.79 
± 0.11), followed by NP (1.65 ± 0.165), and lowest in DC 

Environmental variable
		  Forest community		

p-value
	 DC	 AS	 NP	

E	 1,918.0a ±  183.5	 1,893.5a ±  211.00	 1,654.0b ±  229.00	 <0.001
N	 2.49a ±  0.66	 2.46a ±  0.55	 1.97b ±  0.24	 <0.001
PWM	 171.0ab ±  16.00	 175.0a ±  15.25	 165.0b ±  9.00	 0.006
AP	 919.5a ±  75.75	 952.0b ±  68.00	 997.0c ±  43.00	 <0.001
TWI	 9.01a ±  0.90	 9.45b ±  0.85	 9.62c ±  0.46	 0.007
PH	 5.45a ±  0.20	 5.30b ±  0.30	 5.30b ±  0.10	 <0.001
MDR	 9.56a ±  0.32	 9.43b ±  0.32	 9.35b ±  0.22	 0.006

Forest communities include: Dombeya burgessiae-Cussonia spicata (DC), Aphloia theoformis-Syzygium cordatum (AS), and 
Newtonia buchananii-Parinari excelsa (NP).

Table 1. Environmental variable measures (median ± IQR) in each forest community and their differences: Different lowercase 
letters in rows indicate significantly different medians (Kruskal-Wallis, p < 0.05) for elevation (E, metres above sea level m), 
soil nitrogen (N, ppm), precipitation in wettest month (PWM, mm), annual precipitation (AP, mm), topographic wetness index 
(TWI, unitless), soil pH (pH, unitless), and mean diurnal range (MDR, °C).

(1.34 ± 0.15) (Fig. 5a). D. burgessiae-C. spicata communi-
ty showed a species evenness of (0.66 ± 0.044), followed 
by AS (0.66 ± 0.03), and finally (0.60 ± 0.05) (Fig. 5b). 
Finally, NP had the highest species richness (16.11 ± 1.37), 
followed by AS (15.95 ± 0.87) and DC (8.59 ± 0.89) re-
spectively (Fig. 5c).

Discussion

Forest communities and associated environmental 
variables

This study classified Shagayu and Magamba forests into 
three communities corresponding to a combination of dif-
ferent environmental variables. This demonstrated the role 
of different environmental variables in the dispersion of 

Fig. 5. Variation of alpha diversity indices between the three forest communities of the West Usambara montane forests. Figures 
represent the diversity index mean (circle) and 95% confidence interval (error bars). Lowercase letters indicate group differenc-
es by an estimated marginal mean. DC: Dombeya burgessiae-Cussonia spicata, AS: Aphloia theoformis-Syzygium cordatum, 
NP: Newtonia bucchananii-Parinari excelsa. p-value: (GLM) with a Gaussian error distribution for Shannon’s diversity index 
and species evenness, Poisson distribution for species richness: *p < 0.05, ***p < 0.001.



111

these forest communities. Similar findings have been re-
ported in other tropical forests (Latt and Park, 2022; Lo-
lila et al., 2023; Rawat and Negi, 2021); these differences 
might be due to the unique environmental conditions in 
each community (Thakur et al., 2022).
	 The results from the canonical correspondence 
analysis showed that soil, topographic, and climate vari-
ables together played a crucial, although moderate, role 
in determining species composition in montane forests. 
For example, CCA identified that the DC and AS forest 
communities had relatively higher levels of soil nitrogen 
than NP. Additionally, the AS and NP communities had 
relatively lower soil pH than DC, indicating that site con-
ditions are important in determining the constitution and 
distribution of tropical forest communities (Sagar et al., 
2003). These findings are further supported by those of 
Lolila et al. (2023), in which soil pH significantly influ-
enced the composition of forest communities in subtropi-
cal montane forests of north-eastern Tanzania.
	 Topographical variables, particularly elevation and 
topographic wetness index (TWI), were important vari-
ables influencing the species composition of the DC and 
NP communities at the study sites. The TWI measures the 
ability of the terrain to retain moisture, which can influ-
ence soil moisture and nutrient availability (Kopecký and 
Čížková, 2010). In general, areas with higher TWI values 
tended to have wetter soils, which can support a higher 
diversity of plant species. In tropical ecosystems, the im-
portance of elevation and TWI, as observed in this study, 
is consistent with known morphological and hydrological 
landscape factors, which often create distinct forest types 
(Baldeck et al., 2016; Blanchard et al., 2019; Mus-
carella et al., 2020).
	 Additionally, the mean diurnal range (MDR), 
annual precipitation (AP), and precipitation during the 
wettest month (PWM) have been shown to significantly 
influence forest communities. Mean diurnal range is an 
important factor in determining temperature fluctuations 
within a given area (Braganza et al., 2004), whereas 
AP and PWM are important indicators of moisture avail-
ability (Li et al., 2016). Several studies have reported on 
the influence of climatic variables on forest communi-
ties. For example, the diurnal temperature range has been 
found to have a significant influence on the composition 
of tropical forest communities, despite the narrow annual 
and diurnal temperature range in the tropics (Punyasena 
et al., 2008). Similar to our findings, Bhatta et al. (2021) 
and Nettesheim et al. (2018) documented the influence 
of AP and PWM in shaping forest composition, with 
higher values of these variables favouring hygrophytic 
species growth.

	 Beta	 Turnover	 Nestedness 		
Community	 diversity	 (βturn)

	 (βnest)
		

	 (β)  

DC	 0.948	 0.889	 0.059
AS	 0.858	 0.783	 0.075
NP	 0.832	 0.747	 0.085

Table 2. Beta diversity partitioning results for three forest 
communities based on Bray-Curtis dissimilarity index

Species diversity pattern

Diversity indices are essential tools for evaluating forest 
community dynamics and for understanding species diver-
sity patterns (Rubio et al., 2011; Zhao et al., 2022). The 
results of this study showed that among the three diversi-
ty indices measured (Shannon diversity, species richness, 
and evenness), only Shannon diversity and species rich-
ness were significantly different between forest commu-
nities, with evenness showing no significant differences. 
These results indicate that patterns of tree species diversi-
ty are related to both large-scale (climate) and small-scale 
variables (topography and soil), which together determine 
assemblages of local communities and distribution of spe-
cies in the forests. The variation in species diversity and 
richness might be due to the spatial heterogeneity of hab-
itats within forests (Vleminckx et al., 2015; Wiegand et 
al., 2017). Shannon diversity and richness were the highest 
in the lower elevation forest communities (AS and NP), 
which is in line with previous studies that found higher 
diversity in lower elevation forests (Sharma et al., 2017; 
Thakur et al., 2022). The low species diversity and rich-
ness of the higher-elevation DC forest community could 
be attributed to harsh environmental conditions that cause 
physiological stress to the plants (i.e., lower temperature 
and precipitation), limiting plant growth and regeneration 
(Zhang et al., 2016).
	 The finding that species turnover was the main 
driver of beta diversity in all three forest communities 
suggests that environmental factors play a crucial role in 
shaping the forest community composition (Murphy et 
al., 2016). The strong species-environment relationships 
observed in this study highlight the importance of con-
sidering environmental variables, such as climate, soil 
nutrients, and topography, when studying forest diversity. 
These findings are consistent with previous studies that 
have shown species turnover to be the primary contributor 
to beta diversity in forest communities (Haq et al., 2021; 
Murphy et al., 2015; Rahman et al., 2022).
	 In light of these findings, it is important to con-
sider the potential limitations of this study including as-
pects such as data collection, sample size, and the chosen 
statistical analysis technique. For instance, the limitations 
in data collection methods, such as potential constraints 
in the selection of environmental variables, could have 
influenced the accuracy and completeness of our dataset. 
Additionally, the relatively modest sample size in Mag-
amba forest nature reserve, determined based on practical 
constraints and available resources, may have impacted 
the extent to which the identified variables explain the 
observed variation in species composition and diversity 
patterns. Furthermore, the chosen statistical analysis tech-
nique, while appropriate for our study objectives, may 
have inherent assumptions or limitations that could affect 
the precision or generalizability of our findings.

Conclusion

In conclusion, our study sheds light on the ecological 
characteristics and diversity patterns of tropical montane 
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forests in the West Usambara Mountains. Our findings 
provide valuable insights into the conservation and man-
agement of these ecosystems by identifying distinct forest 
communities and the abiotic factors driving their composi-
tion. The observed differences in the diversity and richness 
indices between communities highlight the importance of 
considering local environmental factors when assessing 
and monitoring biodiversity. Furthermore, the dominance 
of species turnover over nestedness in shaping commu-
nity composition underscores the need for conservation 
efforts that focus on preserving the entire range of spe-
cies in these forests. Overall, our study contributes to a 
better understanding of the complex interactions between 
environmental factors and biodiversity patterns in tropical 
montane forests, and provides a foundation for future re-
search and conservation efforts in this globally significant 
biodiversity hotspot.
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Category	 Environmental variable	 Mean	 SD	 Min	 Max

Topographic	 Aspect (A, degrees)	 173.6	 110.2	 1.2	 353.7
	 Elevation (E, m)	 1,862.9	 166.0	 1,433.0	 2,180.0
	 Slope (S, %)	 33.5	 15.5	 3.9	 84.1
	 Topographic wetness index (TWI)	 9.3	 0.8	 7.1	 11.3
Soil	 Soil pH (PH)	 5.4	 0.2	 4.9	 5.7
	 Soil bulk density (BD, g cm-3)	 1,157.5	 56.0	 997.0	 1,300.0
	 Soil cation exchange capacity (CEC, cmol kg-1)	 16.9	 3.3	 10.0	 26.0
	 Soil organic carbon (OC, g kg-1)	 35.4	 6.0	 22.0	 56.0
	 Soil nitrogen (N, ppm)	 2.4	 0.5	 1.3	 3.9
Climatic	 Annual mean temperature (AMT, °C)	 15.3	 1.2	 13.6	 18.7
	 Mean diurnal range (MDR, °C)	 9.5	 0.3	 8.9	 10.4
	 Isothermality (ISO, %)	 63.1	 1.1	 59.8	 64.9
	 Temperature seasonality (TS, %)	 181.3	 6.9	 166.0	 194.8
	 Maximum temperature of warmest month (MaTWM, °C)	 23.1	 1.1	 21.5	 26.1
	 Minimum temperature of coldest month (MiTCM, °C)	 8.1	 1.3	 6.5	 11.6
	 Temperature annual range (TAR, °C)	 15.0	 0.4	 14.2	 16.2
	 Mean temperature of wettest quarter (MTWeQ, °C)	 16.6	 1.1	 14.7	 19.5
	 Mean temperature of driest quarter (MTDQ, °C)	 13.0	 1.3	 11.3	 16.6
	 Mean temperature of warmest quarter (MTWaQ, °C)	 17.3	 1.2	 15.6	 20.6
	 Mean temperature of coldest quarter (MTCQ, °C)	 13.0	 1.3	 11.3	 16.6
	 Annual precipitation (AP, mm)	 949.2	 50.5	 846.0	 1,053.0
	 Precipitation in wettest month (PWM, mm)	 173.0	 8.9	 157.0	 197.0
	 Precipitation in driest month (PDM, mm)	 12.3	 3.7	 7.0	 21.0
	 Precipitation seasonality (PS)	 72.5	 4.4	 63.1	 79.8
	 Precipitation in wettest quarter (PWeQ, mm)	 397.1	 18.3	 359.0	 434.0
	 Precipitation in driest quarter (PDQ, mm)	 45.5	 11.4	 26.0	 68.0
	 Precipitation in warmest quarter (PWaQ, mm)	 303.8	 19.3	 268.0	 339.0
	 Precipitation in coldest quarter (PCQ, mm)	 47.8	 13.5	 26.0	 78.0

Table S1. Environmental variables included in the analysis and their attributes

Supplementary material
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Table S2. Indicator species analysis results for the West Usamabara forests. The species listed in bold had the highest indica-
tor values (IV) and were used to name the forest community that were strongly associated with them.

Scientific name	 Code	 Cluster	 IV	 p-val
Dombey aburgessiae Gerrard ex Harv.	 Dom.bur	 1	 0.60	 0.001
Cussonia spicata Thunb.	 Cus.spi	 1	 0.54	 0.001
Bersama abyssinica Fresen.	 Ber.aby	 1	 0.53	 0.001
Maesa lanceolata Forssk	 Mae.lan	 1	 0.47	 0.001
Nuxia floribunda Benth.	 Nux.flo	 1	 0.43	 0.006
Cassipourea congensis R.Br. ex DC.	 Cas.con	 1	 0.41	 0.002
Rhus natalensis Bernh. ex C. Krauss	 Rhu.nat	 1	 0.35	 0.003
Maytenus heterophylla (Eckl. & Zeyh.) N. Robson	 May.het	 1	 0.31	 0.012
Memecylon deminutum Brenan	 Mem.dem	 1	 0.31	 0.005
Trimeria grandifolia (Hochst.) Warb.	 Tri.gra	 1	 0.31	 0.008
Flacourtia indica (Burm.f.) Merr.	 Fla.ind	 1	 0.30	 0.012
Ehretia cymosa Thonn.	 Ehr.cym	 1	 0.27	 0.019
Grewia platyclada K. Schum.	 Gre.pla	 1	 0.27	 0.026
Zanthoxylum chalybeum Engl.	 Zan.cha	 1	 0.27	 0.024
Aphloiat heiformis (Vahl) Benn.	 Aph.the	 2	 0.76	 0.001
Syzygium cordatum Hochst. ex Krauss	 Syz.cor	 2	 0.72	 0.001
Macaranga kilimandscharica Pax	 Mac.kil	 2	 0.69	 0.002
Lasianthus kilimandscharicus K.Schum.	 Las.kil	 2	 0.68	 0.003
Ocotea usambarensis Engl.	 Oco.usa	 2	 0.67	 0.002
Psychotria goetzei (K.Schum.) E.M.A.Petit	 Psy.goe	 2	 0.66	 0.001
Podocarpus usambarensis Pilg.	 Pod.usa	 2	 0.60	 0.001
Drypetes gerrardii Hutch.	 Dry.ger	 2	 0.59	 0.001
Rapanea melanophloeos (L.) Mez	 Rap.mel	 2	 0.58	 0.001
Rawsonia lucida Harv.	 Raw.luc	 2	 0.56	 0.003
Vepris nobilis (Delile) Mziray	 Vep.nob	 2	 0.55	 0.037
Maytenus acuminata (L.f.) Loes.	 May.acu	 2	 0.54	 0.009
Tabernaemontana pachysiphon Stapf	 Tab.pac	 2	 0.54	 0.001
Trichocladus ellipticus Eckl. & Zeyh.	 Tri.ell	 2	 0.53	 0.001
Pauridiantha paucinervis (Hiern) Bremek.	 Pau.pau	 2	 0.52	 0.014
Syzygium guineense (Willd.) DC.	 Syz.gui	 2	 0.51	 0.009
Apodytes dimidiata E. Mey. Ex Arn.	 Apo.dim	 2	 0.50	 0.002
Scheffler astuhlmannii Harms	 Sch.stu	 2	 0.49	 0.001
Balthasaria schliebenii (Melch.) Verdc.	 Bal.sch	 2	 0.49	 0.003
Brackenridgea zanguebarica Oliv.	 Bra.zan	 2	 0.46	 0.007
Croton sylvaticus Hochst.	 Cro.syl	 2	 0.45	 0.019
Garcinia buchananii Baker	 Gar.buc	 2	 0.45	 0.005
Chassalia albiflora K.Krause	 Cha.alb	 2	 0.39	 0.004
Olea capensis L.	 Ole.cap	 2	 0.36	 0.022
Tabernaemontana stapfiana Britten	 Tab.sta	 2	 0.35	 0.009
Cassipourea malosana (Baker) Alston	 Cas.mal	 2	 0.32	 0.047
Casearia battiscombei R.E.Fr.	 Cas.bat	 2	 0.31	 0.023
Macaranga conglomerata Brenan	 Mac.con	 2	 0.29	 0.036
Rauvolfia volkensii (K.Schum.) Stapf	 Rau.vol	 2	 0.29	 0.025
Newtonia buchananii (Baker) G.C.C.Gilbert & Boutiqu	 New.buc	 3	 0.87	 0.001
Parinari excelsa Sabine	 Par.exc	 3	 0.69	 0.001
Sorindeia madagascariensis Thouars ex DC.	 Sor.mad	 3	 0.67	 0.001
Leptonychia usambarensis K. Schum.	 Lep.usa	 3	 0.53	 0.001
Mimusops kummel Bruce ex A.DC.	 Mim.kum	 3	 0.52	 0.002
Strombosia scheffleri Engl.	 Str.sch	 3	 0.52	 0.001
Mammea usambarensisVerdc.	 Mam.usa	 3	 0.50	 0.001
Xymalos monospora (Harv.) Baill.	 Xym.mon	 3	 0.49	 0.001
Faurea usambarensis Engl.	 Fau.usa	 3	 0.46	 0.001
Harungana madagascariensis Lam. ex Poir.	 Har.mad	 3	 0.42	 0.001
Zenkerella capparidacea (Taub.) J.Leonard	 Zen.cap	 3	 0.39	 0.004
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Table S2. Continued

Scientific name	 Code	 Cluster	 IV	 p-val 
Trichilia dregeana Sond.	 Tri.dre	 3	 0.39	 0.001
Tremaorientalis (L.) Blume	 Tre.ori	 3	 0.37	 0.008
Tricalysiapallens Hiern	 Tri.pal	 3	 0.34	 0.008
Sapiumellipticum (Hochst.) Pax	 Sap.ell	 3	 0.30	 0.009
Tricalysia ruandensis Bremek.	 Tri.rua	 3	 0.29	 0.006
Heinsenia diervilleoides K.Schum.	 Hei.die	 3	 0.27	 0.022
Celtis gomphophylla Baker	 Cel.gom	 3	 0.25	 0.032
Psydrax parviflora (Afzel.) Bridson	 Psy.par	 3	 0.25	 0.043
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