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A B S T R A C T   

Tree diversity in the tropical forests face escalating threats from wildfires. This study assessed post-fire impacts 
and recovery patterns in Tanzanian Eastern Arc Mountains forests from 2017 to 2022 using field measurements 
and remote sensing techniques. Tree species diversity, composition, and forest stand parameters were compared 
between burned and unburned forest plots across two reserves. A predictive model utilizing 14 key variables 
derived from multispectral satellite data was developed to accurately map burned areas and spatial fire patterns. 
Results revealed significantly lower tree density, aboveground biomass, species richness, and Shannon diversity 
in burned areas compared to unburned forests. However, compositional analysis showed extensive species 
overlap between burned and unburned sites, with burned areas containing more indicative pioneer and 
disturbance-adapted species such as Apodytes dimidiata. Over time since fire events, tree density, basal area, 
aboveground biomass, species richness, evenness, and diversity increased markedly, evidencing active tree re-
covery. The remote sensing model effectively delineated approximately 1430 hectares of burned areas concen-
trated near villages, suggesting prevalent anthropogenic fire ignitions. Although wildfires substantially impacted 
forest structure and biodiversity, the limited compositional shifts point to resilience of these tropical montane 
forests. Integration of diverse spectral bands and textural metrics from multispectral satellite data can support 
precise mapping of fire effects and forest recovery dynamics in these ecologically vital yet threatened ecosystems, 
aiding conservation and management. Overall, this study provides novel insights into post-fire responses in 
Eastern Arc Mountain forests using a synergistic field and remote sensing approaches.   

1. Introduction 

Tropical montane forest ecosystems, characterized by their unique 
ecological attributes and intricate biodiversity, occupy a pivotal position 
in the global natural (Rurangwa et al., 2021). These ecosystems, often 
situated at higher altitudes, harbour a diverse array of flora and fauna 
species that are endemic to the specific conditions of these regions 
(Pinedo-Escatel et al., 2021). As repositories of diverse life forms, these 
forests not only contribute to the overall biodiversity of our planet but 
also offer vital ecosystem services, including carbon sequestration, soil 
stability, and provision of habitats for numerous species (Imbert et al., 
2021). The imperative of conserving forests, particularly in tropical and 
montane regions, is deeply underlined by the complex functions they 
fulfill. Beyond their ecological significance, these forests play a crucial 
role in supporting local communities, providing essential resources, and 
even influencing regional climatic patterns (Imbert et al., 2021). 

However, in the face of escalating anthropogenic pressures, such as 
deforestation, land-use changes, and more prominently, fires, the 
integrity of these vital ecosystems is increasingly compromised (Santos 
Rodrigues, 2020). 

The global landscape of forest ecosystems is deliberately affected by 
and linked to fire dynamics, with human-induced fires emerging as a 
potent and pervasive threat especially in the tropical montane ecosys-
tems (Shuman et al., 2022; Tyukavina et al., 2022). The impact of fires 
on the achievement of REDD+ (Reducing Emissions from Deforestation 
and Forest Degradation) goals and carbon storage are profound, exerting 
a significant influence on global climate change mitigation efforts 
(Fawzy et al., 2020). REDD+ initiatives aim to restrict carbon emissions 
by conserving and sustainably managing forests, recognizing their 
pivotal role in carbon sequestration (Shin et al., 2022). However, the 
occurrence of fires, particularly in tropical and montane forest ecosys-
tems, can disrupt this delicate equilibrium. 
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Fires release substantial carbon stored within trees and vegetation, 
contributing to atmospheric greenhouse gas concentrations (Singh, 
2022). This not only negates the progress made in carbon storage 
through forest conservation but also worsens climate change impacts 
(Bowman et al., 2020). Furthermore, a study by Prichard et al. (2021) 
suggested that, fires alter forest structural attributes, impeding regen-
eration and potentially transforming forests into carbon sources instead 
of sinks. Therefore, effective fire management and mitigation strategies 
are essential to safeguard the accomplishments of REDD+ initiatives and 
to ensure the preservation of vital carbon reservoirs in forests, thereby 
contributing significantly to global climate change mitigation objectives 
(Tyukavina et al., 2022). The aftermath of a fire event in a forested 
landscape can greatly influence a wide range of ecological changes that 
reverberate may have implications on the entire ecosystem (Riley and 
Loehman, 2016). Understanding the patterns of recovery in the wake of 
such disturbances is of paramount importance for effective conservation 
and management (González, 2005). 

The influence of fire on biodiversity, forest structure, and ecosystem 
composition can be profound, potentially leading to shifts in species 
dominance, alterations in vegetation dynamics, and modifications in 
habitat availability (Han et al., 2018). Within this context, the case of 
Tanzania is of particular significance, given its richness in forest types, 
including tropical montane forests, and the associated challenges posed 
by fires that disrupt these ecosystems’ natural equilibrium. 

The crucial role of remote sensing technologies in advancing fire 
ecology studies is exemplified by the potent attributes of PlanetScope 
and Sentinel-2 satellites (Han et al., 2021; Fernández-Guisuraga et al., 
2019). These satellites, equipped with a versatile array of capabilities, 
offer a unique toolkit for comprehensively investigating fire occur-
rences, their ecological impacts, and subsequent recovery processes 
(Han et al., 2021). PlanetScope satellites, renowned for their 
high-resolution multispectral imagery, empower researchers to investi-
gate the details of fire-affected landscapes (Dempewolf et al., 2007). The 
availability of various spectral bands, including near-infrared, red, and 
green, facilitates the computation of indices such as the Normalized 
Burn Ratio (NBR) and Enhanced Vegetation Index (EVI), pivotal for 
assessing burn severity, revealing post-fire vegetation health (Holden 
et al., 2010; João et al., 2018), and capturing changes in land cover and 
land use contributes to the understanding of long-term ecosystem re-
sponses to fires (Burton et al., 2019). This temporal dimension enables 
the assessment of recovery rates, the identification of lagged responses 
in different vegetation types, and the observation of secondary ecolog-
ical effects beyond the immediate post-fire period. Sentinel-2 satellite 
imagery, on the other hand, provides a wealth of multispectral data, 
including red-edge and shortwave infrared bands, which, when coupled 
with texture analysis techniques, uncover fine-scale heterogeneity in 
burned landscapes (Hill, 2013). Texture measures, like the variance, 
contrast, and mean, enhance the detection of nuanced fire impacts and 
vegetation regeneration patterns (Lu et al., 2008). 

Therefore, this study intends to unravel the complex aspects of post- 
fire recovery in tropical montane forests by adopting a multifaceted 
approach that combines field-based measurements with cutting-edge 
remote sensing techniques. The specific objectives of this study are to 
study the following; (i) effect of fire on tree species composition, (ii) 
effects of fire on tree species diversity and stand parameters (iii) post-fire 
recovery of tree species diversity and stand parameters, and (iv) esti-
mate and map burned areas of the study sites. By investigating the tra-
jectories of tree composition, diversity and stand parameter 
reconfiguration in the aftermath of fires, this study contributes valuable 
insights into the forest fires and trees composition relationships in the 
Eastern Arc Mountains especially the West Usambara montane forests 
ecosystems. Moreover, the role of remote sensing, particularly through 
platforms like PlanetScope and Sentinel-2, in monitoring fire occur-
rences, assessing their impact, and guiding conservation strategies, is 
central to this exploration. 

2. Methodology 

2.1. Study sites 

The West Usambara Montane Forests, located in Tanzania’s Lushoto 
and Korogwe Districts, are part of the Eastern Arc Mountains (EAMs) 
and consist of two highland blocks: East Usambara (up to 1484 m) and 
West Usambara (almost 2294 m). Our study focuses on the Magamba 
Nature Forest Reserve (MNFR) and the Shagayu Forest Reserve (SFR) in 
the West Usambara block (Fig. 1). MNFR covers 9283 hectares at 
1650–2300 m above sea level, with a mean annual rainfall of 1200 mm 
and temperatures between 15 ◦C and 30 ◦C. SFR spans 7830 hectares at 
approximately 2098 m above sea level, with an annual rainfall of 1000 
mm. These reserves feature a unique montane climate that supports 
dominant tree species like Ocotea usambarensis, Podocarpus latifolius, 
Albizia gummifera, Hagenia abyssinica, Syzygium guineense, and Ilex mitis 
(Lovett, 1996). Both reserves experience a notable fire regime, primarily 
from September to January, significantly influencing their dynamic 
montane forest ecosystems (Kilawe et al., 2021). 

2.2. Study design 

In this study, vegetation attributes were recorded in the Magamba 
Nature Forest Reserve (MNFR) and the Shagayu Forest Reserve (SFR) 
using a two-phase systematic sampling approach. In the first phase, a 
grid of sampling plots was established, with 225 × 450 m spacing in the 
MNFR and 350 × 700 m spacing in the SFR. During the field expedition 
(second phase), accessible plots from the grid intersections were selected 
as field sampling sites. 

2.3. Data collection 

2.3.1. Field data collection 
In total, we established 195 circular field-sampling plots, with 90 in 

MNFR and 105 in SFR. Within each plot, all trees with a diameter at 
breast height (DBH) ≥ 5 cm were identified to species level and recor-
ded. To provide a comprehensive assessment of the forest, we measured 
the height of three representative trees within each plot, specifically the 
smallest, medium-sized, and largest tree based on DBH using a vertex 
hypsometer. Plot locations were documented at the centre of the plot 
using a handheld Garmin 73 GPS device with 5 m accuracy. Addition-
ally, we determined the status of each plot (burned or unburned) and the 
year of the fire event (ranging from 2022 to 2017) based on documented 
records on the fire occurrences in the study sites. Signs of fire distur-
bance, such as charred tree trunks, scorched vegetation, and fire- 
damaged ground cover, were also considered in this determination. 
Notably, data on climbers, shrubs, or herbs were not collected. 

2.3.2. Sentinel-2 data acquisition and pre-processing 
We acquired two Level 1C Sentinel-2 image tiles from the Copernicus 

Open Access Hub (https://scihub.copernicus.eu/dhus) both dated on 
October 12, 2022. These images were initially in Level-1C top of the 
atmosphere (TOA) reflectance format. Using the ESA Sen2Cor algo-
rithm, we transformed them into Level-2A bottom of the atmosphere 
(BOA) surface reflectance images, employing the “sen2r” package 
(Ranghetti et al., 2020). We selected bands with 10 m and 20 m spatial 
resolutions, with the 20 m bands resampled to 10 m for spatial consis-
tency. To cover our study area, we mosaicked the two tiles. Additionally, 
we sourced PlanetScope imagery for the month of October 2022, which 
is accessed in a pre-processed and ready for analysis form. To match our 
projection requirements, we re-projected the Sentinel-2 and PlanetScope 
data to Arc 1960 UTM 37/S (EPSG 21,037). 

After data preparation, atmospherically corrected images from both 
sensors were used to compute vegetation indices (Table A1). We 
employed the “RStoolbox” package (Leutner et al., 2017), integrated 
into R, for this analysis. This included five fire-based vegetation indices 
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(Alcaras et al., 2022), five broadband optical vegetation indices, and 
three narrowband indices specific to Sentinel-2 data. Furthermore, we 
calculated grey level co-occurrence matrix (GLCM) textural metrics - 
’mean,’ ’variance,’ and ’dissimilarity’ - across all spectral bands and 
indices. This texture analysis, performed with the “glcm” package in R 
(Zvoleff, 2020), used a 3 × 3 window size to capture spatial patterns 
within the imagery. 

2.4. Statistical analyses 

Tree species composition: To determine significant differences in 
tree species composition between burned and unburned sites, a non- 
metric multidimensional scaling analysis (NMDS) using a Bray-Curtis 
dissimilarity coefficient and analysis of similarity of the abundance 
matrix (ANOSIM) with P value of 0.05 were used (Huang et al., 2016). 
By ordinating sites based on their species compositions, the NMDS 
enabled the visual assessment of whether burned and unburned forest 
sites differ systematically based on their species abundances. NMDS 
provided an unconstrained visualization of the patterns in this complex 
dataset, complementing the ANOSIM results to understand differences 
between burned and unburned conditions. Only tree species with an 
abundance of more than 5 individuals were used for the analyses. The 
ANOSIM calculates the differences of the ranked dissimilarities between 
and within a-priori specified groups. This method calculates an R value 
that can be interpreted as the amount of overlap of the groups in 
multivariate space. R values range from 0 to 1, with values less than 0.5 
indicating strong overlap and values of more than 0.75 indicating clearly 
different clusters in multivariate space (Anderson and Walsh, 2013). 
Indicator species analysis was then performed to identify significant 
associations of tree species to burned and unburned sites based on in-
dicator value. The NMDS and ANOSIM analysis were implemented using 
the ‘vegan’ R package v2.6-4 (Oksanen et al., 2007), while indicator 
species analysis was conducted using the ‘indicspecies’ R package (De 
Caceres et al., 2016). 

Tree diversity, stand parameters and recovery: To determine the 
relationship between wildfire and forest diversity, stand parameters and 
their recovery over time, we calculated for all plots; density (N, total 
number of trees ha− 1), basal area (G, m2ha− 1), above-ground biomass 
(AGB, Mgha− 1), species richness (S, total number of species per plot), 
Pileous evenness (J), and species diversity expressed as Shannon’s index 
(H’). Prior to analysis, these parameters were tested for normality, 
revealing that they were not normally distributed. Generalized linear 
models (GLMs) were used to analyse whether fire (burned vs unburned) 
had a significant impact on the forest diversity and stand parameters 
(Butler et al., 2017). For the six different models based on each specific 

parameter, the following families and link functions were employed: a 
Gaussian family with log link for both density and above-ground 
biomass, a gamma family with a log link for basal area, and a Poisson 
family and log link for species richness, evenness, and diversity. All 
forest diversity and stand parameters that were significantly influenced 
by fire were then compared between burned and unburned forest sites to 
quantify effects using Mann-Whitney U tests. Spearman correlations 
were calculated between all forest diversity and stand parameters and 
time since fire occurrence to determine if the parameters recover over 
time (Armenteras et al., 2021). 

Fire mapping: A predictive model was developed for mapping the 
most recent burned forest areas using the Sentinel-2 and PlanetScope 
spectral bands, vegetation and burn indices, and textures. We employed 
XGBoost, a powerful machine learning algorithm, using a training 
dataset containing both burned and unburned plot locations under k- 
fold cross-validation (k = 10). To enhance model accuracy and effi-
ciency, we conducted an in-depth analysis of variable importance using 
Recursive Feature Elimination (RFE) (Zhang et al., 2022). RFE allowed 
us to iteratively identify the most influential predictors which were then 
used to create a final optimised model to generate a detailed burned area 
map of the study forests. 

3. Results 

3.1. Post-fire effects on tree species composition 

The results of the ANOSIM analysis showed that there are no clear 
groups formed by the effects of wildfires (ANOSIM-R = 0.11). These 
results were significant at the 95 % significance level after 999 permu-
tations (Fig. 2). This demonstrates a strong overlap of forest species 
composition. On the other hand, indicator species analysis revealed that 
21 of the 195 species significantly occurred across the sites respectively 
(Table 1). We found a total of 13 species, including Apodytes dimidiata E. 
Mey. ex Arn. and Canthium captum Bullock, occurred in burned sites. In 
unburned sites, Cyathea manniana Hook. was the most indicative spe-
cies. Generally, more species were indicative of burned areas compared 
to unburned areas (Table 1). 

3.2. Post-fire effects on tree diversity and stand parameters 

Fire was found to have an effect on all stand and diversity parameters 
with the exception of species evenness (Table 2). Focusing on tree pa-
rameters with significant effects by fire, we compared them between 
burned and unburned areas of the forests. As shown in Table 3, all 
included parameters were found to differ significantly between burned 

Fig. 1. Location of the study forests, in the Eastern Arc Mountains of Tanzania.  
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and unburned forest areas. The tree density was 38.4 % lower after fire 
disturbance, as was the basal area (41.7 %). In addition, we found about 
52.2 % fewer species in burned forests as compared to unburned forests. 
The comparison of species diversity between burned and unburned 
forests showed that there was 31.3 % less species diversity (H’) in 
burned forests. 

3.3. Post-fire recovery of tree diversity and stand parameters 

In our study, we found strong and statistically significant positive 
correlations between years since fire disturbance and all tree diversity 
and stand parameters (Fig. 3). Tree density increased significantly with 
time since fire (P =>0.001, r = 0.49), as did basal area (P =>0.001, r =
0.58), and above-ground biomass (AGB) (P = >0.001, r = 0.6). The 
Shannon diversity index exhibited a highly significant positive correla-
tion (P = >0.001, r = 0.87), indicating an increase in species diversity 
over time. Similarly, species richness showed a remarkable increase (P 
= >0.001, r = 0.95), accompanied by a significant positive correlation 
with years since fire. Evenness also displayed a positive correlation (P =
0.003, r = 0.39) with time since fire, albeit with a lower coefficient. 

3.4. Burned area mapping 

Through Recursive Feature Elimination (RFE), we identified an 
optimal model comprising 14 key predictor variables that effectively 
captured post-fire landscape dynamics for the study sites. Notable var-
iables in this selection included the contrast of NBRplus, the mean 
texture of Sentinel-2 red band (B04), PlanetScopes DVI and others 
(Fig. 4). 

The optimised model demonstrated robust performance, with an 
accuracy of 0.688 (SD: 0.083) and a kappa value of 0.0998 (SD: 0.261), 
showing its ability to distinguish burned and unburned areas accurately 
(Table A2). Using the model, a burned area prediction map was created 
to visually depict the spatial distribution of burned areas (Fig. 5). From 
the map a total burned area of approximately 1430 hectares was found. 

4. Discussion 

The findings of this study point to a degree of ecological resilience of 

Fig. 2. Non-metric multidimensional scaling ordination (NMDS) for forest plots 
showing convex hulls. 

Table 1 
Indicator species analysis for the burned and unburned sites of the forests.  

Site status Scientific name Code Importance 
value 

P- 
value 

Burned Apodytes dimidiata E.Mey. ex 
Arn. 

Apo. 
dim 

0.438 0.010 

Canthium captum Bullock Can. 
cap 

0.339 0.003 

Cussonia holstii Harms ex Engl. Cus. 
hol 

0.326 0.045 

Diospyros natalensis (Harv.) 
Brenan 

Dio. 
nat 

0.268 0.039 

Euclea divinorum Hiern Euc. 
div 

0.472 0.001 

Maytenus senegalensis (Lam.) 
Exell 

May. 
sen 

0.416 0.002 

Mystroxylon aethiopicum 
(Thunb.) Loes. 

Mys. 
aet 

0.453 0.001 

Ochna holstii Engl. Och. 
hol 

0.443 0.011 

Olea europaea subsp. africana 
(Mill.) P.S.Green 

Ole. 
eur 

0.339 0.005 

Olinia rochetiana A.Juss. Oli. 
roc 

0.386 0.004 

Rhus natalensis Bernh. ex C. 
Krauss 

Rhu. 
nat 

0.379 0.004 

Trichocladus ellipticus Eckl. & 
Zeyh. 

Tri.ell 0.464 0.018 

Warburgia ugandensis Sprague War. 
uga 

0.281 0.026 

Unburned Cyathea manniana Hook. Cya. 
man 

0.835 0.001 

Dasylepis integra Warb. Das. 
int 

0.417 0.049 

Ehretia cymosa Thonn. Ehr. 
cym 

0.231 0.024 

Entandrophragma excelsum 
(Dawe & Sprague) Sprague 

Ent. 
exc 

0.244 0.018 

Leptonychia usambarensis K. 
Schum. 

Lep. 
usa 

0.332 0.007 

Margaritaria discoidea (Baill.) G. 
L.Webster 

Mar. 
dis 

0.239 0.030 

Mussaenda microdonta 
Wernham 

Mus. 
mic 

0.388 0.001 

Turraea holstii Gürke Tur. 
hol 

0.333 0.004  

Table 2 
Influence of fire on tree density, basal area, above-ground biomass, species 
richness, evenness, and diversity, mean with standard error (SE) of all 195 plots 
(N) (burned and unburned), and P-values.  

Stand/Diversity parameter N Mean (SE) Fire influence 

Tree density (N, trees ha− 1) 195 651.87 ± 29.19 >0.001 
Basal area (G, m2ha− 1) 195 25.78 ± 1.66 0.002 
Above-ground biomass (AGB, Mgha− 1) 195 255.54 ± 15.85 >0.001 
Species richness (S) 195 12.77 ± 0.44 >0.001 
Species evenness (J) 192 

* 
0.82 ± 0.01 0.689 

Shannon diversity (H’) 195 2.03 ± 0.04 0.001  

* N is smaller, as the computation of species evenness is only possible for plots 
with at least two tree species. 

Table 3 
Differences between burned and unburned forest sites (N = 56 burned, N = 139 
unburned).  

Structural parameter Unburned Burned P-value 

Tree density (N, trees ha− 1) 949 ± 66.30 585 ± 30.10 >0.001 
Basal area (G, m2ha− 1) 39.1 ± 3.46 22.8 ± 1.80 0.002 
Above-ground biomass (AGB, Mgha− 1) 393 ± 32.00 224 ± 17.10 >0.001 
Species richness (S) 22.2 ± 0.56 10.6 ± 0.34 >0.001 
Shannon diversity (H’) 2.72 ± 0.03 1.87 ± 0.04 0.001  
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Tanzanian Eastern Arc montane forests to wildfire disturbances. Despite 
the significant impacts of tree species stand parameters like above- 
ground biomass and tree density, we found minimal shifts in overall 
tree species composition between burned and unburned forest areas. 
The extensive overlap shown by the ANOSIM analysis suggests that 
many dominant tropical montane tree species are able to persist through 
or rapidly recolonize following fires (Ford and Hardesty, 2012; Mondal 

and Sukumar, 2015). This aligns with other studies in tropical forests 
that found limited changes to fundamental tree species composition 
after even high-severity burns compared to more pronounced compo-
sitional shifts in temperate and boreal systems (Barlow and Peres, 2004; 
Oliveras et al., 2014, 2018). 

Certain inherent traits like resprouting allow many tropical tree 
species to regenerate after fire (Teixeira et al., 2020). Our identification 
of disturbance-associated pioneer species as indicators in burned plots 
points to prevalence of fire-adapted species, although most species were 
shared across sites. This underscores the vital capacity of these forests to 
naturally restore ecological structure and functions despite disruptions 
(Mori et al., 2017). However, potential lags and thresholds exist – 
increased frequencies of fire could overcome resilience mechanisms if 
insufficient recovery time is allowed between burns (Wilcox et al., 
2020). 

Active ecological recovery processes within these tropical montane 
forests were shown in this study through post-fire regeneration patterns 
across a 5-year period. We found strong positive correlations between 
stand and diversity parameters like density, biomass, and Shannon’s 
index and time since fire. This accumulation of biomass over time 
highlights the forests capacity to gradually restore carbon storage and 
sequestration functions that are central to climate change mitigation 
(Chazdon et al., 2016). The recovery of species diversity and richness 
also demonstrates the steady re-establishment of complex ecological 
niches and habitats (Derroire et al., 2016). However, some parameters 
may recover faster than others – tree density and basal area rebounded 
more rapidly compared to diversity (Majumdar et al., 2016; McGregory 
et al., 2016). Varied regeneration rates across diversity and stand pa-
rameters point to potential time lags (Subashree et al., 2020). While 
forests may regain simpler structural complexity shortly after fire, ele-
ments like species richness and heterogeneity may require longer un-
disturbed periods to fully recover (Cavallero et al., 2015). 

The value of integrating multispectral remote sensing data from 
PlanetScope and Sentinel-2 platforms to map and analyse fire patterns in 
these tropical montane forests was demonstrated in this study. The 

Fig. 3. Post-fire recovery of (a) above-ground biomass, (b) basal area, (c) density, (d) species evenness, (e) richness, and (f) diversity, in the forests. Dots represent 
plots burned in 2022 (n = 7), 2021 (n = 7), 2020 (n = 9), 2019 (n = 12), 2018 (n = 10), and 2017 (n = 11). The solid black line indicates the linear trend line of the 
burned forest parameter values, with 95 % confidence interval. Mean unburned tree stand parameter is indicated by the red horizontal dashed line. 

Fig. 4. Relative importance plot of optimal Sentinel-2 and PlanetScope remote 
sensing features in mapping burned forest areas using XGBoost. Features 
include: msiB02 = Sentinel-2 band 2 (Blue), pG.con = contrast of PlanetScope 
green band, msiB04 = Sentinel-2 band 4 (Red), pG = PlanetScope green band, 
msiB03.con = contrast of Sentinel-2 band 3 (Green), pDVI = PlanetScope dif-
ference vegetation index, msiNBRplus.mea = mean of Sentinel-2 NBRplus, pRVI. 
con = contrast of PlanetScope ratio vegetation index, msiNBR.con = contrast of 
Sentinel-2 normalized burn ratio, msiNDSWIR = Sentinel-2 normalized differ-
ence short-ware infrared burn index, msiRVI.con = contrast of Sentinel-2 ratio 
vegetation index, pNIR = PlanetScope near-infrared band, and pG.mea = mean 
of PlanetScope green band. 
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optimized predictive model accurately delineated burn areas totalling 
approximately 1430 hectares, with hotspots clustered near villages. This 
suggests prevalent anthropogenic ignitions, aligning with other tropical 
forest studies (Balch et al., 2008; Morris, 2010; Kelley et al., 2019). The 
model optimization using Recursive Feature Elimination highlighted the 
importance of textural metrics like contrast of NBR+ for quantifying 
landscape heterogeneity (Chen et al., 2018; Mishra et al., 2018). The 
approach also revealed the utility of diverse spectral bands and indices 
for capturing fire impacts on vegetation health (Bar et al., 2020; Miller 
and Thode, 2007). While some key predictors differed from previous 
tropical forest models, the overall effectiveness underscores the adapt-
ability of this mapping methodology. The capacity to integrate datasets 
from multiple sensors provides a flexible toolkit to generate time-series 
analyses that reveal both immediate and lagged ecological responses 
over the post-fire recovery trajectory (Chuvieco et al., 2020). 

While this study gives important insights into post-fire assessment on 
tree species composition, diversity, and stand parameters, there are 
some limitations to consider. The relatively short interval of 5 years 
since fire events may not capture longer-term successional dynamics. 
Legacy effects and cumulative impacts of previous fires, as well as other 
disturbances like land use changes, were not accounted for but may 
influence vegetation patterns. The restricted spatial scale focused on 
only two forest reserves, which could limit generalization. Monitoring 
across broader temporal and spatial scales would build understanding of 
recovery patterns. Despite these limitations, this work makes a signifi-
cant contribution by assessing post-fire tree responses in an important 
region and ecosystem type while providing a foundation for further in-
vestigations into tropical montane forest dynamics. 

5. Conclusion 

Our study highlights post-fire effects in Eastern Arc Mountain forests 
using an integrative approach combining field measurements and opti-
cal remote sensing. Despite fire disturbances, the forests display exten-
sive tree species overlap, and only slight compositional shifts were 
observed. Strong correlations between diversity and stand parameters 
with time since fire demonstrate regeneration, showing the forests ca-
pacity to reaccumulate biomass and regenerate tree diversity. The 

remote sensing model effectively mapped burn areas and revealed fire 
hotspots near villages, the utility of spectral indices and textures for 
monitoring wildfires. These findings have important implications for the 
conservation of threatened yet critical tropical montane forests. Further 
investigations should build on these findings, focusing on long-term 
monitoring, fire frequency thresholds, strategies to mitigate wildfire 
ignitions, and the effects on overall biodiversity of the area. 
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Appendices  

Table A1 
Description of vegetation indices used as predictor variables for burn area mapping.  

Index Name Expression Sensor Reference 

DVI Difference Vegetation Index NIR-Red S-2, PS Richardson and Wiegand (1977) 
EVI Enhanced Vegetation Index 2.5[(NIR − Red) / (NIR + 2.4Red + 1)] S-2, PS Liu and Huete (1995) 
GNDVI Green Normalized Difference Vegetation Index (NIR − Green) / (NIR + Green) S-2, PS Gitelson et al. (1996) 
NDVI Normalized Difference Vegetation Index (NIR − Red) / (NIR + Red) S-2, PS Rouse et al. (1974) 
RVI Ratio Vegetation Index NIR / Red S-2, PS Pearson and Milton (1972) 
CLRE Chlorophyll Red-Edge (RE3 / RE1) − 1 S-2 Gitelson et al., 2003 
ND-RE1 Normalized Difference Red Edge (RE2 − RE1)/(RE2 + RE1) S-2 Gitelson and Merzlyak (1994) 
ND-RE2 Normalized Difference Red Edge (RE3 − RE1) / (RE3 + RE1) S-2 Barnes et al. (2000) 
NBR Normalized Burn Ratio (B12 − B8A) / (B12 + B8A) S-2 Garcia and Caselles (1991) 
NBRSWIR Normalized Burn Ratio-SWIR (B12 − B11 − 0.02) / (B12 + B11 + 0.1) S-2 Liu et al. (2020) 
NDSWIR Normalized Difference Shortwave Infrared Index (B11 − B8A) / (B11 + B8A) S-2 Gerard et al. (2003) 
MIRBI Mid-Infrared Bi-Spectral Index 10B12 − 9.8 × B11 + 2 S-2 Trigg and Flasse (2001) 
BAIS2 Burned Area Index for Sentinel 2 (

1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
B6 × B7 × B8A

B4

√ )
×

( B12 − B8A
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
B12 + B8A

√ + 1
) S-2 Filipponi (2018) 

NBR+ Normalized Burn Ration Plus (B12 − B8A − B3 − B2) / (B12 + B8A + B3 + B2)  S-2 Alcaras et al. (2022)   

Table A2 
Recursive feature elimination (RFE) results under 10-fold cross-validation showing performance of feature resampling over total 
feature subset size (132). The row in bold indicates the optimal feature subset.  

Number of features Accuracy Kappa AccuracySD KappaSD 

1 0.533 − 0.118 0.058 0.190 
2 0.626 0.013 0.073 0.181 
3 0.632 0.036 0.102 0.263 
4 0.617 0.008 0.090 0.179 
5 0.658 0.093 0.089 0.187 
6 0.662 0.056 0.087 0.244 
7 0.677 0.080 0.084 0.218 
8 0.688 0.097 0.094 0.262 
9 0.688 0.123 0.099 0.250 
10 0.668 0.081 0.107 0.256 
11 0.657 0.040 0.078 0.163 
12 0.662 0.038 0.073 0.185 
13 0.673 0.058 0.071 0.181 
14 0.693 0.140 0.067 0.155 
15 0.662 0.032 0.075 0.183 
16 0.683 0.104 0.072 0.171 
17 0.678 0.098 0.074 0.162 
18 0.683 0.107 0.083 0.191 
19 0.678 0.109 0.081 0.151 
20 0.688 0.114 0.076 0.192 
21 0.678 0.072 0.059 0.169 
22 0.673 0.063 0.059 0.169 
23 0.688 0.089 0.052 0.164 
24 0.662 0.033 0.053 0.163 
25 0.677 0.070 0.076 0.211 
26 0.683 0.095 0.067 0.213 
27 0.672 0.060 0.068 0.191 
28 0.662 0.042 0.062 0.189 
29 0.673 0.073 0.075 0.196 
30 0.683 0.084 0.078 0.228 
31 0.672 0.073 0.073 0.202 
32 0.673 0.054 0.078 0.208 
33 0.668 0.044 0.071 0.180 
34 0.683 0.093 0.074 0.184 
35 0.673 0.073 0.080 0.167 
36 0.678 0.062 0.067 0.148 
37 0.688 0.093 0.073 0.173 
38 0.678 0.064 0.075 0.165 
39 0.688 0.087 0.057 0.151 
40 0.693 0.108 0.079 0.203 
41 0.678 0.075 0.088 0.194 
42 0.682 0.079 0.060 0.154 
43 0.678 0.092 0.075 0.169 
44 0.667 0.034 0.079 0.195 
45 0.662 0.026 0.080 0.195 
46 0.667 0.035 0.080 0.188 
47 0.667 0.046 0.076 0.186 

(continued on next page) 
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Table A2 (continued ) 

Number of features Accuracy Kappa AccuracySD KappaSD 

48 0.657 0.017 0.079 0.200 
49 0.672 0.046 0.067 0.144 
50 0.672 0.042 0.072 0.184 
51 0.662 0.024 0.069 0.180 
52 0.657 0.017 0.079 0.200 
53 0.672 0.059 0.077 0.183 
54 0.667 0.033 0.070 0.174 
55 0.677 0.050 0.069 0.175 
56 0.683 0.060 0.071 0.169 
57 0.672 0.044 0.077 0.200 
58 0.672 0.042 0.072 0.184 
59 0.662 0.026 0.080 0.203 
60 0.672 0.046 0.087 0.206 
61 0.667 0.021 0.072 0.187 
62 0.678 0.067 0.075 0.181 
63 0.678 0.077 0.093 0.229 
64 0.673 0.054 0.088 0.228 
65 0.667 0.034 0.079 0.195 
66 0.662 0.026 0.080 0.203 
67 0.678 0.056 0.076 0.208 
68 0.677 0.063 0.073 0.199 
69 0.683 0.083 0.085 0.231 
70 0.667 0.034 0.079 0.195 
71 0.678 0.047 0.088 0.221 
72 0.667 0.046 0.073 0.181 
73 0.667 0.040 0.083 0.201 
74 0.652 − 0.003 0.079 0.202 
75 0.668 0.028 0.086 0.229 
76 0.657 0.005 0.079 0.196 
77 0.662 0.026 0.080 0.203 
78 0.668 0.028 0.086 0.229 
79 0.662 0.013 0.079 0.197 
80 0.667 0.034 0.079 0.195 
81 0.657 0.011 0.082 0.224 
82 0.662 0.020 0.086 0.236 
83 0.667 0.033 0.070 0.182 
84 0.678 0.032 0.078 0.212 
85 0.662 0.020 0.086 0.236 
86 0.677 0.052 0.076 0.192 
87 0.667 0.021 0.070 0.179 
88 0.657 0.006 0.080 0.200 
89 0.673 0.061 0.083 0.194 
90 0.672 0.037 0.080 0.224 
91 0.667 0.022 0.071 0.183 
92 0.662 0.013 0.070 0.186 
93 0.667 0.030 0.091 0.253 
94 0.672 0.062 0.084 0.202 
95 0.657 0.012 0.086 0.235 
96 0.672 0.029 0.068 0.179 
97 0.673 0.037 0.083 0.217 
98 0.662 0.012 0.073 0.186 
99 0.662 0.014 0.077 0.190 
100 0.662 0.014 0.077 0.190 
101 0.667 0.028 0.078 0.221 
102 0.667 0.021 0.072 0.187 
103 0.652 − 0.003 0.079 0.202 
104 0.662 0.013 0.070 0.186 
105 0.682 0.078 0.077 0.203 
106 0.683 0.066 0.078 0.202 
107 0.662 0.020 0.086 0.229 
108 0.683 0.072 0.085 0.220 
109 0.667 0.026 0.070 0.225 
110 0.662 0.009 0.073 0.201 
111 0.667 0.026 0.070 0.225 
112 0.673 0.025 0.083 0.215 
113 0.683 0.072 0.080 0.227 
114 0.657 0.010 0.070 0.162 
115 0.662 0.013 0.096 0.239 
116 0.667 0.037 0.072 0.195 
117 0.667 0.021 0.072 0.187 
118 0.683 0.073 0.089 0.223 
119 0.667 0.041 0.084 0.206 
120 0.683 0.084 0.080 0.226 
121 0.652 − 0.016 0.077 0.201 
122 0.673 0.031 0.079 0.209 
123 0.678 0.040 0.075 0.178 

(continued on next page) 
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Table A2 (continued ) 

Number of features Accuracy Kappa AccuracySD KappaSD 

124 0.677 0.038 0.069 0.174 
125 0.672 0.060 0.081 0.214 
126 0.667 0.022 0.073 0.191 
127 0.682 0.060 0.069 0.183 
128 0.672 0.030 0.070 0.183 
129 0.672 0.047 0.090 0.229 
130 0.678 0.057 0.080 0.197 
131 0.672 0.018 0.056 0.156 
132 0.678 0.055 0.072 0.212  

References 

Alcaras, E., Costantino, D., Guastaferro, F., Parente, C., Pepe, M., 2022. Normalized burn 
ratio plus (NBR+): a new index for Sentinel-2 imagery. Remote Sens. (Basel) 14 (7), 
1727. https://doi.org/10.3390/rs14071727. 

Anderson, M.J., Walsh, D.C., 2013. PERMANOVA, ANOSIM, and the Mantel test in the 
face of heterogeneous dispersions: what null hypothesis are you testing? Ecol. 
Monogr. 83 (4), 557–574. 
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