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Abstract: Accurate information on above-ground biomass (AGB) is important for sustainable forest management as well as 

for global initiatives aimed at combating climate change in the Tropics. In this study, AGB was estimated using a combination 

of field and Sentinel-2 earth observation data. The study was conducted at Magamba Nature Reserve in Lushoto district, 

Tanzania. Field plot-based AGB values were regressed against eighteen Sentinel-2 remote sensing variables (bands and 

vegetation indices) using Random Forest (RF) models based on centroid and weighted approaches. Results showed that the 

weighted model had the highest fit and precision (pseudo-R
2
 = 0.21, rRMSE = 68.23%). A prediction map was produced with a 

mean AGB of 223.47 Mg ha
-1

 which was close to that of the field (225.19 Mg ha
-1

). Furthermore, the standard deviation of the 

AGB obtained from the map (i.e 174.04 Mg ha
-1

) was relatively lower as compared to the one obtained from the field-based 

measurements (i.e 97.42 Mg ha
-1

). This study demonstrated that Sentinel-2 imagery and RF-based regression techniques have 

potential to effectively support large scale estimation of forest AGB in the tropical rainforests. 
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1. Introduction 

Accurate forest above-ground biomass (AGB) retrieval is 

often required to assist in carbon monitoring, reporting, and 

verification (MRV) schemes for the global climate change 

mitigation strategies. One notable mitigation strategy under 

the United Nations Framework Convention on Climate 

Change (UNFCCC) is Reducing Emissions from 

Deforestation and Forest Degradation (REDD+) [1]. In 

context to this, field-based methods or forest inventory 

approaches had been considered over time as the most 

accurate approach for estimating forest AGB [4]. However, 

this conventional method is associated with limitations 

related to high cost of field measurements, time-consuming 

nature, and site selection biases [14]. Furthermore, in the 

tropical montane forests, accurately mapping and estimation 

of AGB using field-based methods remains a challenge due 

to the complex forest structure and topography [12, 32]. 

Therefore, the development of timely, precise, and cost-

effective methods which integrate field and remote sensing-

based data is apparently important for monitoring large scale 

forest AGB in such biomes. 

Earth observation through satellite remote sensing has 

become an appropriate tool for estimating AGB across 

challenging forest ecosystems [15]. These techniques have 

the ability to produce accurate estimates and additionally 

map and monitor the spatial distribution of AGB unlike 

conventional methods [2, 29]. Earth observation techniques, 

particularly those based on remotely sensed data, can aid in 

the ability of obtaining continuous and repetitive digital data 

from the same location, with varying spatial resolutions, 

covering extensive areas and reducing processing time as 

well as costs [22]. 

Copernicus’ twin satellite by the name of Sentinel-2 has a 

number of specialties essential for land monitoring and 

assessing bio-geophysical parameters such as AGB [9] 

particularly in dense forests [11, 13]. This is in part due to the 

robustness of the Sentinel-2 red-edge bands [28]. In 

Tanzania, attempts to estimate AGB of plantation forests 

were done in 2013 by [23] using Landsat products, and in 
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2019, [25] used ALOS-PALSAR, Sentinel-1 (SAR) and 

Sentinel-2 as well as their combinations. Thus, very little is 

known on the prediction and estimation of natural forests 

AGB based on Sentinel-2 satellite imagery in the country 

which potentially can support forest carbon monitoring 

initiatives under REDD+ programmes. This study therefore 

aims to use this opportunity to explore the capability of using 

Sentinel-2 satellite imagery in estimating the AGB of a dense 

natural forest in North-eastern Tanzania. Specifically, the 

study aimed at 1) to model AGB using spectral bands and 

indices, 2) to compare the precision of AGB models 

developed from the Sentinel-2 variables extracted via 

centroid and area weighted mean approaches, and 3) to 

estimate and map AGB using Sentinel-2 data. 

2. Materials and Methods 

2.1. Study Area 

The study was conducted at Magamba Nature Reserve, 

Lushoto district, Tanzania. The forest lies between 4°37’S, 

38°11'E and 4°470’S, 38°20’E (Figure 1). The area is 

characterized by cool climate throughout the year with two 

distinct rainy seasons [7]. The topography is highly variable 

ranging from gentle plains to very steep sloping mountainous 

areas [27]. 

 

Figure 1. Location of the study area. 

2.2. Sampling Design 

Two phase sampling design was used to establish 55 

circular (15 m radius) field sample plots in the forest reserve. 

The area was initially populated with first-phase sample plots 

along a grid of 450 by 900 m. Second-phase sample plots 

were then picked out of the first phase samples based on 

accessibility and cost. The plot coordinates of the second 

phase sample plots were then loaded into a global positioning 

system (GPS) receiver, which were then used to navigate to 

the actual field plot center locations. 

2.3. Field Measurement 

All trees with a diameter at breast height (DBH) ≥ 5 cm in 

each plot were measured using a caliper or diameter tape 

(depending on the trees’ size). In each plot, three trees having 

the smallest, middle and largest DBH were selected as 

sample trees for height measurement using a Vertex 

hypsometer. For trees without height measurements, height 

was predicted using a height-diameter (H-d) model 

constructed from the sample trees. The AGB of each 

individual tree was calculated using allometric models for 

lowland and humid montane forests developed by [24]. The 

AGB of all trees within each plot was summed to obtain total 

AGB for that particular plot and then scaled to per-hectare 

values according to the respective plot area. 

2.4. Satellite Data 

Sentinel-2 level 1C multispectral data having ground 

resolutions of 10, 20 and 60 m was used in this study. The 

cloud-free image was acquired on 12 March 2019 in the 

Universal Transverse Mercator (UTM) coordinate system 

(WGS 84, zone 37S) from the Copernicus Open Access Hub 

(https://scihub.copernicus.eu). Radiometric correction to 

bottom-of-atmosphere (BOA) reflectance was performed 

using the ATCOR algorithm in Sen2Cor [21]. All spectral 

bands (Appendix 1), with the exception of bands 1 (coastal 

aerosol), 9 (water vapor) and 10 (SWIR-cirrus), were 

extracted and reprojected to Arc 1960 UTM/37S coordinate 

system. Additionally, all bands with more than 10 m were 

resampled to 10 m resolution to ensure spatial consistency 

among the bands and maintain the spectral information. Eight 

selected vegetation indices (Appendix 2) were calculated 

from the spectral bands to evaluate the potential of the bands 

operating in the near infra-red (NIR) and red-edge (RE) 

spectrum [17]. 

2.5. Data Analysis 

This study grouped the analysis into four stages: spectral 

value extraction, model development, accuracy assessment 

and AGB mapping. All geospatial and statistical computing 

was conducted using R version 4.1.2 [30]. 

2.5.1. Spectral Value Extraction 

Two approaches of spectral value extraction were tested (i) 

a centroid approach where values from the satellite imagery 

were extracted from a single pixel superimposed with the 

plot center coordinate, and (ii) a weighted approach in which 

values were extracted as the weighted mean of the pixels 

intersecting with the plot area [25]. 

2.5.2. Model Development 

The empirical models relating AGB measured at the plot 

level and remotely sensed predictor variables were fitted 

using random forest regression algorithm. Random forest is a 

non-parametric regression method, which is developed, based 
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on the regression trees algorithm, where predictor variables 

are split to grow a number of nodes to select the best 

predictor variable. About two-thirds of the samples (in-bag 

samples) are used to train the trees and remaining one third 

(out-of-bag (OOB) samples) are used in an internal cross-

validation technique for estimating the OOB error [18]. The 

principle behind random forest regression as it is applied in 

this study is explained in [3] and its use for modelling and 

prediction of forest tree attributes had widely been reported 

[11, 16]. 

A key advantage however, in random forest, is that, greater 

number of predictor variables of various types (categorical, 

continuous, binary) can be handled and the relative 

importance of each predictor variable can be estimated 

during the model calibration process. Furthermore, RF had 

the ability to identify complex nonlinear relationships 

between response and predictor variables [10]. 

In this analysis, the random forest algorithm was run 

iteratively using the randomForest package in R [20]. The 

model initially included all covariates, the least influential 

covariates were dropped, and the model was refitted with 

six best covariates as per the variable importance figures. 

The preliminary analysis suggested that the six covariates 

were most effective for developing a robust model with 

reasonable prediction accuracy. The importance of each 

covariate in the model was determined using the 

ggRandomForest package in R [8]. This was essentially 

aimed to understand how individual predictor variables 

contribute to the model fit. 

2.5.3. Accuracy Assessment 

To enable comparison among models with different 

extraction methods we evaluated the models using the 

predictions from the internal out of the bag (OOB) sampling 

procedure, which is equivalent to leave one out cross 

validation. The predicted values were therefore used to 

estimate measures of reliability. We used relative root mean 

square error as the most common statistic used to 

characterize the error of remote sensing-based forest biomass 

and volume models. The root mean square error (RMSE) and 

the relative root mean square error (rRMSE) were calculated 

as; 
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	                         (1) 

and 

����� � ����
�� � 100%                       (2) 

where �
  and ��
  denote field measured AGB and predicted 

AGB for plot i, respectively, and �� denotes mean field 

measured AGB for all plots. The RMSE and the rRMSE were 

computed based on the predictions from the OOB samples 

(leave one out cross validation) and compared among the 

different model categories. Additionally, we also computed 

pseudo-R
2
 as the measure of the quality of the model fit, 

which was calculated as: 
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2.5.4. AGB Mapping 

In order to develop an AGB prediction map, the AGB 

model with the lowest rRMSE obtained from either 

centroid or weighted value extraction approach was used 

to spatially predict AGB over the entire forest area. 

Furthermore, the descriptive statistics of the AGB 

prediction map were computed and compared with the 

field-based estimates. 

3. Results 

3.1. Field Above-ground Biomass 

AGB in different DBH classes showed a reverse trend to 

that of density distribution (Figures 2a and 2b). The mean 

field AGB was 225.19 Mg ha
-1

, with minimum and 

maximum values of 19.05 Mg ha
-1

 and 720.79 Mg ha
-1

, 

respectively. The field standard deviation (SD) was 174.04 

Mg ha
-1

. Most plots had AGB values ranging from 100 to 250 

Mg ha
-1

, with relatively fewer plots having AGB values 

below 100 Mg ha
-1

 and between 250 to 400 Mg ha
-1

. The 

least number of plots were found to have AGB values greater 

than 550 Mg ha
-1

 (Figure 3). 

 

Figure 2. (a) Density distribution and (b) AGB distribution of trees in the 

study area. 
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Figure 3. Distribution of field AGB within the sample plots. The values on 

top of each bar represents the number of field plots having the given range 

of field AGB. 

3.2. Variable Selection and Model Performance 

The results showed that the AGB models developed from 

the variables extracted from the weighted-based approach 

performed relatively better in terms of R
2
 and rRMSE as 

compared to the centroid-based approach (Table 1). 

Table 1. RF model accuracy assessment. 

AGB model 
Sentinel-2 spectral data 

R2 RMSE% 

Centroid 0.096 74.027 

Weighted 0.211 68.230 

 

Figure 4. Predicted vs. observed AGB of sample plots for the (a) centroid-

based and (b) weighted-based model. 

The performance of the models for each variable 

extraction method are further explained with scatter plots 

(Figure 4) showing the relationships between the field 

measured AGB and the predicted AGB. The scatter plots 

indicate that there were obvious overestimation and 

underestimation problems in the prediction results, no matter 

which value extraction method was used. 

Among the predictor variables, Band 12 (SWIR2) was 

found to be the most important variable for the weighted-

based model (Figure 5). The other most important five 

predictor variables which were selected were those that are 

either in a red-edge band or derived from red-edge bands 

(with the exception of the blue band [B02]). 

 

Figure 5. Random forest predicted variable importance for the weighted-

based model showing top variables for AGB prediction. 

 

Figure 6. Comparison of observed AGB and predicted AGB for each model. 
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Comparison between the prediction trends of the two 

models in relation to the observed AGB is shown in Figure 6. 

Predicted AGB by the weighted model is slightly more 

consistent with observed field AGB. The AGB of plots 

containing dense large forest stands with high DBH were 

likely to be underestimated. Figure 6 also highlights the main 

limitation of random forest models which is the lack of 

capacity to predict beyond the range of the response values in 

the training data, as the highest predicted value of AGB is 

around the region of 400 Mg ha
-1

. 

3.3. AGB Prediction Map 

The identified six Sentinel-2 image predictors as well as 

the final model were then applied to create an AGB map 

(Figure 7) of the entire study area. The minimum and 

maximum predicted AGB was 53.31 and 541.41 Mg ha
-1

 

respectively. The mean AGB for the entire nature reserve was 

223.47 Mg/ha with a SD of 97.42 Mg ha
-1

. 

 

Figure 7. Spatial distribution of AGB in Magamba nature reserve. 

4. Discussion 

The main objective of the study was to determine the 

potential of Sentinel-2 satellite imagery in modelling, predicting 

and mapping AGB, and thus investigating the potential of using 

open-source remotely sensed data to provide information that 

can support the implementation of REDD+ programme by the 

UNFCCC in the tropics. This was the first study to be conducted 

in Tanzania on the estimation of AGB using Sentinel data in a 

dense tropical mountain forest such as Magamba. As such the 

study had made a substantial contribution to the field of remote 

sensing assisted forest inventory. 

The results obtained are comparable across the tropical 

forests with similar vegetation types with slight variations. 

For example, [28] reported R
2
 = 0.81, rRMSE = 25.32% 

while [6] reported R
2
 = 0.81, rRMSE = 36.67%. The reported 

pseudo-R
2
 of 0.21 and rRMSE of 68.23% are generally lower 

when compared to the other studies mentioned above. 

However, this is attributed to the more complex forest 

structure associated with dense crown cover and higher AGB 

values existing in our study area. Nevertheless, compared to 

the conventional field-based methods, there is a large 

substantial gain in terms of more spatial coverage as well as 

the reduction in the SE of the AGB estimates from 174.04 to 

97.42 Mg ha
-1

. This is evidence of the capability of machine 

learning techniques, such as Random Forest, in estimating 

AGB with considerable prediction accuracy. 

Among the two approaches of value extraction, the 

weighted values provided the model with the greatest 

accuracy in terms of the pseudo-R
2
 and rRMSE. This is 

understandable as weighted values factor in the area covered 

by the plots and thus result in a more representative pixel 

value that better relates to AGB as compared to a centroid 

value approach whose plot centroid may be located in a pixel 

that shares only part or none of the plot area. This 

observation is confirmed with findings from [25], 

irrespective of the value extraction method. 

The six important top variables that were selected to 

develop the final model mostly consisted of SWIR and red-

edge band-based variables. This highlights the use of 

Sentinel-2 data having better spectral (with additional SWIR 

and red-edge bands) and spatial resolutions among the 

available medium resolution sensors. SWIR band has shown 

stronger relations with field measured AGB irrespective of 

data and environmental settings [26]. Vegetation reflects 

maximum energy at the NIR region of the electromagnetic 

spectrum but is unable to provide information on the soil 

under the vegetation, whereas the SWIR band can 

differentiate moisture content of vegetation and soil [5]. 

Therefore, the SWIR band could capture the vegetation cover 

with the underneath soil conditions more efficiently. 

The estimates of AGB for the forest reserve in Magamba are 

within those reported by [31] for the world’s tropical montane 

forests (i.e., AGB of 77-785 Mg ha
-1

) as well as those of [19] 

which was estimated across 260 African tropical forests. 

Despite the limitations, the results in this study 

demonstrated that Sentinel-2 imagery and RF-based regression 

techniques have potential to effectively support large scale 

estimation of forest AGB in the tropical rainforests. 

5. Conclusion and Recommendation 

This study demonstrated an approach for forest AGB 

estimation by integrating open-source remotely sensed data 

and field data with the aid of a machine learning algorithm. 

Random Forest (RF) was applied to identify the dominant 

spectral bands and vegetation indices to estimate forest AGB. 

Using a combination of six spectral band and vegetation index 

variables, the RF algorithm effectively predicted the spatial 

distribution of forest AGB of Magamba Nature Forest Reserve, 

Lushoto, Tanga, Tanzania. The method provides a scientific 

basis for estimating high-resolution forest AGB integrating 

field data and Sentinel-2 remote sensing data with the help of 

machine learning techniques. The methodology can be adopted 
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for mapping and monitoring the forest biomass of Tanzania. 

This approach can also be used to study the spatio-temporal 

changes of biomass as it is time and cost-effective. The 

estimated spatial distribution of AGB is not only an important 

source for monitoring biomass or carbon stocks, it also 

contributes to the preparation of national reference scenarios of 

biomass and implementation of REDD+ activities. 

The precision of the forest AGB estimation may be further 

enhanced by exploiting information from combining both 

radar and optical multi-source remote sensing data, this can 

be the potential direction for future studies. 
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Appendix 

Appendix 1: Sentinel-2 Spectral Bands 

Table 2. Sentinel-2 Multi-Spectral Instrument (MSI) bands and spatial 

resolutions. 

Band number Spatial resolution (m) 

B01 – Coastal aerosol 60 

B02 - Blue 10 

B03 - Green 10 

B04 - Red 10 

B05 - Vegetation red-edge 1 20 

B06 - Vegetation red-edge 2 20 

B07 - Vegetation red-edge 3 20 

B08 - Near Infra-red (NIR) 10 

B8A - Narrow NIR 20 

B09 - Water vapor 60 

B10 - SWIR-cirrus 60 

B11 - SWIR1 20 

B12 - SWIR2 20 

Source: ESA (2015). 

Appendix 2: Vegetation Indices 

Table 3. Vegetation indices calculated from the Sentinel-2 images. 

Index Formula 

NDVI (B08 – B04) / (B08 + B04) 

EVI 2.5 * (B08 – B04) / (B08 + 6 × B04 – 7.5*B02 + 1) 

RE-NDVI 1 (B08 – B06) / (B08 + B06) 

RE-NDVI 2 (B08 – B07) / (B08 + B07) 

RE-NDVI 3 (B08 – B05) / (B08 + B05) 

ND-RE1 (B06 – B05) / (B06 + B05) 

ND-RE2 (B07 – B05) / (B07 + B05) 

CHL-RE (B07 – B05) - 1 

Source: Mauya et al. (2019). 
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