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ABSTRACT 

Forest biomass estimation using field -based 
inventories at a large scale is challenging and 
generally entails large uncertainty in tropical 
regions. In this study, we investigated the 
performance of Sentinel 2 and Planet Scope 
data for above ground biomass (AGB) 
modelling, in the tropical rainforest of 
Tanzania. A total of 296 field inventory plots 
were measured across the west Usambara 
mountain forests. The results showed that, 
Sentinel 2-based model fitted using GLMs 
had better performance (cvRMSEr = 67.00 
% and pseudo-R2= 20%) as compared to 
Planet Scope-based models (cvRMSEr = 
72.1 % and pseudo-R2= 5.2%). Overall 
GLMs resulted into models with less 
prediction errors in contrast to random forest 
when using Sentinel 2 data. However, for the 
Planet Scope, there was marginal 
improvement when using random forest 
(cvRMSEr = 72.0%). Models that 
incorporated texture variables produced 
better prediction accuracy as compared to 
those with band values and indices only. The 
study has shown that, Sentinel 2 and Planet 
Scope remotely sensed data can be used to 
develop cost-effective method for AGB 
estimation in tropical rainforests of 
Tanzania. 

Key words: Biomass �± GLMs - Planet Scope 
- Sentinel-2 - Random Forest �± Texture. 

 

INTRODUCTION  

Estimation of forest biomass and carbon 
stock is important for quantification of the 
roles of forests as carbon sources or sinks, 

and for supporting sustainable forest 
management (Mauya et al. 2015a, Temesgen 
et al. 2015). In the recent decades, the 
concern about global climate change, has 
further highlighted the need for developing 
efficient methods for estimating and 
reporting forest biomass and carbon stocks at 
local, national, continental and global scale 
(Fawzy et al. 2020). One of the notable 
forest-based climate change mitigation 
programme under the United Nations 
Framework Conversion on Climate change, 
is a programme on Reducing Emission From 
Deforestation and Forest Degradation, 
through conservation, sustainable 
management of forests and enhancement of 
forest carbon stocks in developing countries 
(REDD+) (Mauya and Madundo 2021). This 
programme requires accurate information on 
forests biomass and carbon stock as a basis 
for its implementation and monitoring. 
Moreover, forest biomass is also recognized 
by the Global Climate Observing Systems as 
an Essential Climate Variable (Duncanson et 
al. 2019) and its systematic characterization 
is important for reporting on afforestation, 
reforestation, and deforestation categories 
globally (Herold et al. 2019). 

Field-based sample survey such as national 
forest inventory, had traditionally been used 
to provide estimates of aboveground biomass 
(AGB) at regional and national scales 
(Naesset et al. 2016). However, the wall-to-
wall estimation of AGB over large areas by 
field-based measurements require a dense 
network of inventory plots to reach good 
accuracies and precision (Mitchell et al. 
2017). Using remote sensing-assisted forest 
inventories, in such areas is therefore, the 
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most practical option given the ability of 
remotely sensed data to account for 
limitations related to sample size, time lines, 
expenses, and accessibility (Koch 2015). 
Remotely sensed data provide also a synoptic 
view over large areas and greatly enhance the 
precision and usefulness of the conventional 
field-based methods (Sinha et al. 2015). 
However, there are still challenges in 
selecting the appropriate remote sensing 
data, variables, and modeling algorithms for 
different ecological environments to produce 
intended results. 

To date, a variety of remotely sensed data 
including; Light Detection and Ranging 
(LiDAR), Radio Detection and Ranging 
(RADAr) and Optical Remote Sensing have 
been used for estimating and mapping AGB 
in different forest types. Of these methods, 
LiDAR system has been proven to have an 
excellent ability in predicting and estimating 
AGB with better precision in comparison to 
using radar and optical data (Tian et al. 
2013). However, the limitations of data 
availability, high cost and huge data volume 
(Zhao et al. 2016a), impede its wider 
application in estimating forest AGB in 
lower- and middle-income countries with 
larger coverage of forest. Landsats has been 
traditionally the first-hand choice alternative 
to commercial remotely sensed data, and it 
has widely been applied globally for AGB 
estimation and mapping across different 
forests types. This is mainly because of their 
medium spatial resolution, relatively large 
coverages, and freely and long history time 
series data availability since the 1980s (Boyd 
and Danson 2005, Wulder et al. 2011). 

The launching of the Copernicus program of 
the European Space Agency had further 
increased the global repository of open 
access data with more important 
developments in spatial, temporal, and 
radiometric resolution (Astola et al. 2019, Li 
et al. 2021). For example; the improved 
spatial resolution from 30 m of Landsat 8 to 
10 m of Sentinel-2 makes a big difference for 
the operational actors which enables 

estimation of variables (e.g., AGB per ha) at 
the lower scale levels of forest plots and 
stands. Sentinel-2 (particularly A and B) has 
more spectral bands (13 Sentinel-2 vs. 7 
Landsat-8 bands), including three Vegetation 
Red Edge (VRE) and one Narrow Near 
Infrared (NNIR) bands (Forkuor et al. 2018, 
Biswas et al. 2020). The VRE bands are 
expected to contribute to improved AGB 
estimation and mapping (Qiu et al. 2017). 
Furthermore, recently, high-resolution 
imagery (Planet Scope) has been made 
�D�Y�D�L�O�D�E�O�H���W�R���W�K�H���S�X�E�O�L�F���W�K�U�R�X�J�K���W�K�H���1�R�U�Z�D�\�¶�V��
International Climate and Forest Initiative 
(NICFI), with Kongsberg Satellite Services 
(KSAT) and its partners Planet and Airbus 
(Poortinga et al. 2021). Planet Scope data are 
specifically intended to enhance forest 
monitoring in the tropical countries for 
REDD+ implementation and sustainable 
forest management at large. Despite the 
freely availability of both Sentinel-2 and 
Planet Scope data, fewer studies have 
reported their capability in estimating and 
mapping AGB in the tropical rainforests. 
Thus, understanding their performance and 
contributions in enhancing the precision of 
AGB estimates relatively to the conventional 
field-based methods, will set a baseline 
information for developing robust method 
for estimating AGB at different spatial scales 
in the dense tropical forests. 

Like any other remotely sensed data, 
Sentinel 2 and Planet scope, do not directly 
measure AGB from the air or space, but 
rather rely on the empirical models 
developed by linking the information derived 
from ground field measurements (i.e., 
AGB/ha) at a plot or stand level and the 
corresponding remotely sensed predictor 
variables derived from the same spatial scale 
as the field plot (Vafaei et al. 2018). Such 
models are used to provide pixel-wise 
predictions of the respective AGB over the 
entire area of interest covered by the 
remotely sensed data (e.g. Gizachew et al. 
2016, Jha et al. 2021, Li et al. 2021). Thus, 
the quality of the model is of fundamentally 
important in deriving precise estimates of 
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AGB when using remotely sensed assisted 
forest inventory. To achieve this, a number 
of statistical methods including parametric, 
semi-parametric and non-parametric have 
been applied with varying levels of accuracy 
(Chen et al. 2018, Nuthammachot et al. 
2018, Ahmad et al. 2021, Cosenza et al. 
2021, Jiang et al. 2021). Performance of 
these methods varies with data types, forest 
types, forest structure and sample size 
(Fassnacht et al. 2014). Therefore, it is 
important to compare these methods in order 
to select appropriate algorithm for 
establishing AGB estimation models when 
using new remotely sensed data (Li et al. 
2020). Such studies are however limited in 
the tropical rainforest especially those using 
Sentinel-2 and planet-scope imageries.  

Selection of the predictor variable is another 
key parameter that affects the quality of the 
model when relating AGB and remotely 
sensed predictor variables (Adame-Campos 
et al. 2019). In the context of optical 
remotely sensed, the commonest predictor 
variables which have been applied in 
different studies include, reflectance values, 
vegetation indices and texture variables 
(Dang et al. 2019, Jha et al. 2021). Among 
all predictors, textural variables, had been 
reported to improve the accuracy of AGB 
prediction models across different forest 
types, partly because of their strong 
correlation with different forest structure 
attributes including AGB (Pandit et al. 
2020). Therefore, while the main objective of 
this study is to predict AGB using Sentinel-2 
and Planet Scope data, specifically the study 
aimed to evaluate the importance of different 
statistical methods and predictor variables on 
modelling and predicting AGB using 
Sentinel-2 and Planet Scope. Potential gain 
in precision of remotely sensed AGB 
estimation compared to pure field 
measurements were also quantified. 

 

 

 

MATERIALS AND METHODS  

Study area 

This study was conducted in west Usamabara 
mountains block (4° 25'-5° 07' S and 38° 10'-
38° 35' E) located in Northern Tanzania 
(Figure 1). These mountains are part of the 
widely known Eastern Arc Mountains 
(EAMs) which are group of isolated 
mountains stretching from Southeast Kenya 
to the Makambako gap in south central 
Tanzania (Figure 1). The west Usambara 
montains block (WUMB) are considered as 
the large upland block in the northern part of 
the Eastern Arc range which covers about 
2,200 km2 and rising from 408 to 2294 
m.a.s.l. 

The WUMB are found mainly in Lushoto 
District, but a smaller area extends to 
Korogwe District. The climate in WUMB is 
oceanic with bimodal rainfall, partly 
determined by their proximity to the Indian 
Ocean and the equator. Rainfall peaks in 
April and November. The maximum mean 
annual rainfall is 2000 mm in the wettest 
areas, falling to less than 600 mm in the rain 
shadow areas (Lovett 1996). Temperatures 
are higher on the lower parts (25-27° C mean 
monthly) and lower on the plateau (13-18°C 
mean monthly). The minimum and 
maximum temperatures are 13° C and 27° C, 
respectively. Extreme temperatures (7° C 
during cold seasons and 30° C during hot 
seasons) have been recorded (Msuya and 
Kideghesho 2009). 

This study was conducted in five forests 
namely: Magamba nature forest reserve, 
Shagayu forest reserve, Ndelemai forest 
reserve, Balangai forest reserve, 
Mahezangulu and Kisimagonja forest 
reserve located within the WUMB (Figure 
2). The areas and elevational ranges of the 
forests are presented in Table 1.  

These forests have vegetation types ranging 
from lowland, intermediate (sub-montane) 
and highland (montane) evergreen forests. 
Common tree species are Newtonia 
buchananii, Parinari excelsa, Albizia 
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gummifera, Ocotea usambarensis and 
Allanblackia stuhlmannii.

Figure 1. Location of forests within WUMB  

Table 1: Name, area and elevation ranges of 
the individual forests within WUMB  
Forest name Area Elevation ranges 
Magamba 9283 1650-2300 
Shagayu 7830 1400-2100 
Ndelemai 1421 1422-1790 
Balangai 992 1440-1760 
Mahezangulu 322 1400-1750 
Kisimagonja 1440 1400-1765 

 
Data Collection 

Sampling design 

Systematic sampling design was used in all 
the five forests with slight variations from 
one forest to another. In Magamba Nature 
Forest Reserve a systematic grid of 225 x 900 
was established, field plots were populated to 
cover the entire area with inter plot distance 
of 225m. A subsample of 55 circular plots 
were selected and measured in the field. We 
selected 55field plots, due to high travel costs 

and long walking distances in the steep and 
rough terrain which would nearly not permit 
to cover all the field plots on the 225x 900 
grid. However, to ensure that all the 
variations of AGB on the entire forest were 
covered, we developed a sampling strategy 
that ensured the entire altitudinal variations 
existing in the forest were included. In 
Shagayu forest reserve, a systematic grid of 
700x 350, was established and intensified 
with plots at a distance of 350 m apart. The 
initial plan was to measure all the plots, but 
given the difficult terrain, some of the plots 
were inaccessible. Thus, 99 field circular 
plots of 15 m radius were measured in 
Shagayu forest reserve. For Balangai, 
Ndelemai, Mahezangulu and Kisimagonja 
forest reserves, the sample plots were 
established at a grids of 700 x 350 m. All the 
plots were measured in the field with inter-
plot distance of 350m in each of the forest as 
presented in Table 2. 
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Figure 2. Location of field sample plots for each forest within WUMB 

Field data 

Field data were collected between March and 
June 2020. Hand held Global Positioning 
System (GPS) was used to navigate to the 
center of the field plot using the pre-defined 
coordinates obtained from the sampling grid, 
and recorded. In Magamba, Shagayu, 
Mahezangulu and Kisimagonja, circular 
plots of 15 m radius were established. On 
each plot, diameter at breast height (dbh) for 
all trees with dbh larger than 5cm were 
measured using caliper and their scientific 
and local names recorded. In Balangai and 
Ndelemai, diameter at breast height (dbh) 
was measured using caliper following the 
lower dbh thresholds in accordance with the 
concentric circle plot design (Vesa et al. 
2010). The radii of the concentric circles 
were 2, 5, 10, and 15m. Trees with dbh �•��������
�•�� ������ �•�� �������� �D�Q�G�� �•�� ������ �F�P���� �U�H�V�S�H�F�W�L�Y�H to these 
concentric plots were measured. However, in 
our analysis we considered only trees with 
dbh greater than 5, because such trees are 

considered to store substantial amount of 
carbon as compared to smaller trees. Across 
all the six sites, three trees (i.e., larger, 
medium and small) in each sample plot were 
measured for height using Vertex 
Hypsometer. The heights of the remaining 
trees were predicted using diameter-height 
model that was developed based on the 
sample trees. A number of model forms for 
diameter�±height relationship were tested 
using non-linear mixed effect approach 
implemented in lmfor package (Mehtatalo 
and Mehtatalo 2015), of the R statistical 
software Best model fit, judged by the 
Akaike information criterion (AIC), was 
obtained using the model form by Näslund 
(1936). 

Field estimates of AGB 

AGB was calculated for each individual tree 
using the local allometric model developed 
by Masota et al. (2016) with both dbh and 
height as predictor variables. Using models 
with both dbh and height has been reported 
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to moderate the effect of large dbh-values on 
AGB estimates as compared to models with 
dbh only. The individual tree AGB were then 
summed to obtain total AGB for the 
respective plot and finally up scaled to per ha 

values by dividing with plot area. The 
descriptive statistics of AGB are presented in 
Table 1 and the distribution across individual 
forests is shown in Figure 3.

Table 2. Descriptive statistics for AGB (Mg/ha)  
Forest Number 

of plots 
Minimum Maximum Mean Standard 

deviation 
Balangai 34 7.41 627.33 178.92 112.29 
Kisimagonja 46 42.30 716.46 310.94 172.59 
Magamba 55 22.66 641.74 230.01 168.81 
Mahezangulu 14 53.54 372.74 200.52 93.55 
Ndelemai 48 1.31 347.05 129.64 96.79 
Shagayu 99 4.60 1125.91 326.05 215.23 
All  296 1.31 1125.91 251.17 184.63 

 

Figure 3. AGB distribution for the forests of WUMB. The high dots represent maximum value, 
the solid middle bar is the median value and lower dot is lower value 

Remotely sensed data 

Sentinel 2 

Cloud- and shadow-free Sentinel-2 bottom of atmosphere (L2A) mosaic for the entire of the 
WUMB was obtained from the Sentinel Hub (Kirches 2018). The mosaics contained the Blue 
(B02), Green (B03), Red (B04), Red Edge 1 (B05), Red Edge 2 (B06), Red Edge 3 (B07), Near 
Infrared (B08), Narrow Near Infrared (B08), Shortwave Infrared 2 (B11), Short Wave Infrared 
3 (B12). All the bands were ordered at the spatial resolution of 10 m, indicating that, bands 
with original resolution coarser than 10 m (all bands except B2-B4) were re-sampled to 10 m 
using the nearest neighbour method, as described in the S2 Global Mosaic User Manual 
(https://usermanual.readthedocs.io/en/latest/). In additional to the spectral bands, we derived 
the vegetation indices from the sentinel 2 optical bands using RStoolbox package (Benjamin 
et al. 2019) implemented in the R statistical software. The calculated vegetation indices were 
specifically chosen to evaluate the potential of the bands in operating in NIR and the red edge 
spectrum as bands operating at these wavelengths have been found affective in predicting forest 
characteristics in various studies (e.g. Chen et al. 2018, Mauya et al. 2019, Malhi et al. 2021, 
Theofanous et al. 2021). The vegetation indices were computed as indicated in Table 3. The 
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Grey Level Co-�2�F�F�X�U�U�H�Q�F�H�� �0�D�W�U�L�[�� ���*�/�&�0���� �W�H�[�W�X�U�D�O�� �P�H�W�U�L�F�V�� �³�P�H�D�Q�´���� �³�Y�D�U�L�D�Q�F�H�´�� �D�Q�G��
�³�G�L�V�V�L�P�L�O�D�U�L�W�\�´ (Haralick et al. 1973), were also computed for all the spectral bands and indices, 
using GLCM package (Zvoleff 2020) in R software. In computation of the texture metrics, we 
selected a window size of 3 × 3 pixels to ensure that it is closely matching and comparable with 
the pixels size of the input data (i.e.,10 m): larger window sizes are unlikely to reveal textural 
vegetation patterns that are relevant for successfully estimating AGB. 

Table 3. Names, equations and sources of the vegetation indices derived from Sentinel 2 data 
Vegetation Indices Name Equations References 
CLG Green-band Chlorophyll Index (B07)/(B03-1) (Gitelson et al. 2003) 
NDVI  Normalized Difference Vegetation 

Index 
(B08-B04)/(B08+B04) 

(Rouse et al. 1974) 

CLRE Red-edge-band Chlorophyll Index (B07)/(B05-1) (Gitelson et al. 2003) 
GNDVI Green Normalized Difference 

Vegetation Index 
(B08-BO3)/(B08+B03) (Gitelson et al. 1996) 

NBRI Normalized Burn Ratio Index (B08-B12)/(B08+B12) (García and Caselles 
1991) 

NDREI1 Normalized Difference Red Edge 
Index1  

(B06-B05)/(B06+B05) (Gitelson and Merzlyak 
1994) 

NDREI2 Normalized Difference Red Edge 
Index 2 

(B07-B05)/(B07+B05) (Barnes et al. 2000) 

RE-NDVI_705 Red-Edge Normalized Difference 
Vegetation index 3 

(B08-B05)/(B08+B05) 
(Puletti et al. 2018) 

RE-NDVI_740 Red-Edge Normalized Difference 
Vegetation index 1 

(B08-B06)/(B08+B06) (Fernández-Manso et al. 
2016) 

RE-NDVI_783 Red-Edge Normalized Difference 
Vegetation index 2 

(B08-B07)/(B08+B07) (Huete et al. 1997) 

SAVI Soil Adjusted Vegetation Index (B08-B04)*(1+L) 
(BO8+B04+L) 

(Huete 1988) 

EVI Enhanced Vegetation Index 2.5*(B08-
B04)/(BO8+2.4*B04+1) 

(Jiang et al. 2008) 

Planet Scope  

Planet Scope Surface Reflectance Mosaics 
covering our area of interest was downloaded 
from 
https://www.planet.com/basemaps/#/mosaic
/planet_medres_visual_2021-
06_mosaic/zoom/2.57). The mosaics were 
optimized for scientific and quantitative 
analysis with minimum effects of 
atmospheric sensor characteristics and other 
artifacts caused by haze, light and 
topography (Poortinga et al. 2021). The 
mosaics contained four bands which are; 
Red, Green, Blue and Near-Infrared both 
with spatial resolution of 4.77m per pixel. 
We used Bi-Annual mosaic acquired in June 
2019 in order to have a closer match with the 
Sentinel 2 data for comparisons of the 
performance of the two optical remotely 
sensed data. For each band, we computed 

average, mode and standard deviation of the 
reflectance values. NDVI was also calculated 
based on the formula by Rouse et al. (1974). 
For each band as well for the NDVI layer, we 
calculated various texture metrics, including; 
Mean, Variance, Homogeneity, Contrast, 
Dissimilarity, Entropy, Second Moment and 
Correlation were computed using GLCM 
package in R software. 

Extraction of the remotely sensed 
explanatory variables 

In order to ensure spatial overlap between the 
measured AGB at the 15 m radius field plot 
and the information acquired from the 
remotely sensed data, we firstly overlaid the 
field plots on the remotely sensed data 
mosaics (i.e. bands, vegetation indices, and 
texture layers). Secondly, we made a sample 
plot polygon (i.e., buffer) with the radius of 
15 m and extracted the area weighted means 
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of the pixel values intersecting with the 
sample plot polygons using the extract 
function in raster package of R software 
(Hijmans et al. 2015). The extracted values 
for each dataset were then grouped into 
different categories. For Sentinel-2, we 
grouped into: 1) band values; 2) vegetation 
indices; 3) texture of band values; 4) texture 
of indices; and 5) combination of all 
variables. For Planet Scope we had: 1) band 
values; 2) texture of NDVI; and 3) 
combination of band values and texture of 
NDVIs. 

Model development 

Generalized Linear Models (GLMs) and 
Random forest were used to develop AGB 
predictive models using remotely sensed 
data. The models were developed for each 
dataset (i.e., Sentinel-2 and Planet Scope), as 
well for each category of predictor variables 
described above. Three key steps were 
followed in the modelling processes which 
include: 1) Variable selection; 2) model 
development/ fitting; and 3) model 
validation. The details for each step are 
described below. 

Variable selection and Model fitting 

GLMs 

A generalized linear Model with gamma 
distribution and logarithmic link functions 
(Zuur et al. 2013) was used to develop 
models relating AGB at the plot levels and 
the remote sensing predictor variables. To 
ensure that we develop robust models for 
different datasets and predictor variables, we 
first performed variable selection as one of 
the critical steps in modelling the 
combination of field and remote sensing 
data. Candidate predictor variables, were 
�V�H�O�H�F�W�H�G�� �X�V�L�Q�J�� �³regsubset�´�� �I�X�Q�F�W�L�R�Q��
�L�P�S�O�H�P�H�Q�W�H�G�� �L�Q�� �³leaps�´�� �S�D�F�N�D�J�H��(Lumley 
and Lumley 2013) of the R software. The 
�³regsubset�´�� �U�H�J�U�H�V�V�L�R�Q�� �S�H�U�I�R�U�P�V�� �³�D�O�O��
�V�X�E�V�H�W�V�´�� �Z�K�H�U�H�� �D�O�O�� �S�R�V�V�L�E�O�H�� �Y�D�U�L�D�E�O�H��
combinations are considered and ranked 
based on different scoring criteria ("AIC", 
���%�,�&�����������0�D�O�O�R�Z�¶�V��Cp statistics " etc.). In this 

study we used BIC, a combination of 
predictors that minimizes the BIC over all 
possible subsets, was considered as the best 
subset for model development. The variable 
selection was repeated for each category of 
predictor variables. The best subsets were 
then used to fit the models and the variables 
were further assessed based on their 
significance (i.e., p<0.05) and variance 
inflation factor (VIF). Predictor variables 
with VIF values greater than 10 were 
regarded as an indication of multi-
collinearity problems (Nelson et al. 2017), 
and were trimmed out from the model. 

Random Forest 

Random forest (RF) is a non-parametric 
regression method, which is developed, 
based on the regression trees algorithm, 
where predictor variables are split to grow a 
number of nodes to select the best predictor 
variable. About two-thirds of the samples 
(in-bag samples) are used to train the trees 
and remaining one third (out-of-bag (OOB) 
samples) are used in an internal cross-
validation technique for estimating the OOB 
error ���%�H�O�J�L�X�� �D�Q�G�� �'�U���J�X� �� ����������. The 
principal behind random forest regression as 
it is applied in this study is explained in 
Breiman (2001) and its use for modelling and 
prediction of forest tree attributes has widely 
been reported (Hayashi et al. 2014, Vafaei et 
al. 2018). A key advantage however, in 
random forest, is that, greater number of 
predictor variables of various types 
(categorical, continuous, binary) can be 
handled and the relative importance of each 
predictor variable can be estimated during 
the model calibration process. Furthermore, 
RF had ability to identify complex nonlinear 
relationships between response and predictor 
variables (Fassnacht et al. 2014).  

In this analysis, development of the random 
forest model was done using the selected 
predictor variables from the VSURF package 
implement in R software (Genuer et al. 
2015). The VSURF algorithm first filters out 
unimportant predictor variables based on 
random forest mean variable importance 
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values. Then, an iterative optimization is 
conducted to select the variables most 
suitable for predicting the response variable. 
VSURF suggests two sets of variables, one 
optimized for interpretation (i.e., some 
predictors may be redundant but equally 
important for predicting the response) and 
another one optimized for prediction (i.e. 
focusing solely on obtaining a possibly high 
model fit) (Genuer et al. 2015). Here, we 
selected the variable subset optimized for 
prediction accuracy and fitted the model with 
the number of trees (ntrees) fixed to 500 and 
the mtry-parameter to number of predictors / 
3. With this, we followed the findings of 
earlier investigations which stated that these 
standard settings for mtry and ntrees obtain 
good accuracies in most cases (Oshiro et al. 
2012, Probst et al. 2019, Fassnacht et al. 
2021). 

Accuracy assessment 

GLMs 

Two step approach was done to validate and 
evaluate the GLMs. In the first step, we 
evaluated the fits of the models by 
�F�D�O�F�X�O�D�W�L�Q�J�� �$�N�D�L�N�H�¶�V�� �,�Q�I�R�U�P�D�W�L�R�Q�� �&�U�L�W�H�U�L�R�Q��
(AIC), root mean square error (RMSE) and 
relative value (RMSEr) based on the 
predictions from the model (i.e. internal self-
validation). The RMSE and RMSEr, were 
calculated using the equations below. 
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Where �U�Ü��and �U
Ü�Üdenote field measured AGB 
and predicted AGB for plot i, respectively, 
and �U
$��denotes mean of the field measured 
AGB for all plots. 

In the second step, to enable comparison 
among the models developed from different 
groups of predictor variables, and to 
understand the models�¶ performance on 
other datasets as well to compare the 
performance with the non-parametric 

method, the models were cross validated 
using a k-fold cross validation. This 
approach involves randomly dividing the 
data into k approximately equal folds or 
groups. Each of these folds is then treated as 
a validation set in k different iterations. We 
used a k-�Y�D�O�X�H�� �R�I�� ������ �V�L�Q�F�H�� �L�W�¶�V�� �E�H�H�Q�� �Z�L�G�H�O�\��
used and shown empirically to yield test 
error rate estimates that suffer neither from 
excessively high bias nor from very high 
variance (James et al. 2013, Kuhn and 
Johnson 2013). The 10-fold cross-validation 
involves splitting the dataset into 10-subsets. 
In each fold, one subset is held out for 
checking the model performance (i.e., the 
validation set), while the model is trained on 
all other subsets (i.e. 9). The process is done 
repeatedly until all the subsets have been 
used as the validation dataset. The predicted 
values from all the folds were finally 
compiled into a table and used to estimate 
cross validated RMSE (cvRMSE) and 
RMSEr (cvRMSEr), using the equations 
presented above, now with predicted values 
from the 10-fold cross validation. 

Random forest 

Random forest models were evaluated using 
both the internal boot strap procedure as well 
as the k-fold cross validation. In the first 
place, the predictions from the OOB samples 
were used to compute RMSE and RMSEr. 
To confirm this, and to have fair comparison 
with the parametric method, we evaluated 
the models using the k-fold procedure 
described above. The predictions from k-fold 
were then used to compute cvRMSE and 
RMSEr. 

Efficiency of remotely sensed assisted 
AGB estimation 

In order to estimate the relative efficiency 
(RE) of using remotely sensed assisted AGB 
estimation as compared to pure field 
estimates, we computed the variance of both 
field and remotely sensed AGB estimates, 
i.e., 
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Where ���8
á�Ù�Ü�Ø�ß�× is the variance of the pure field 
based AGB, which is computed using 
equation below: 

�8
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Ü�Ô�;

�.�Ù
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���8
á�å�Ø�à�â�ç�Ø�ß�ì���æ�Ø�á�æ�Ø�× is the variance of the 
remotely sensed AGB estimation for specific 
predictor category and data source. This was 
estimated using the variance estimator of the 
so-called generalized regression estimator 
presented in equation 5 below. 
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Where �A�¸�Ü
L �U�Ü
F �U
Ü�Ü is the model prediction 

residual for plot i and �A
L
�Ã �Ø�¸�Ô

�Ù
�Ô�8�-

�á
 is the mean 

residual for all plots. Standard error (SE) was 
computed as the square root of the variance 
estimates. Values of RE greater than 1.0 
indicates higher efficiency of remotely 
sensed assisted estimates than field-based 
estimates for a given data source. 

AGB prediction map 

Finally, the best parametric and non�±
parametric model was used to predict AGB 
over the entire area of interest. Since our 
interest was to see only the spatial prediction 
of AGB, we used the native resolution of 
each image. The mean and standard 
deviation of the AGB predictions from the 
map were then computed to get an indication 
of its variability relative to the mean and 
standard deviation of the field based AGB 
measurement. 

 

RESULTS 

Performance of Parametric Method 
(GLMs) 

Sentinel 2 

Models comprising of band values, indices, 
texture of band values, texture of indices and 
their combination were developed. The 
number of variables for the models were 
ranging from one to four. For all the models, 

the parameter estimates were significantly 
different from zero (p<0.05) and the VIF 
values were <10, indicating acceptable levels 
of multicollinearity. The AIC values for the 
models were ranging from 3777 to 3819, 
with the lowest values obtained using a 
model with the combination of texture 
metrics of CLG, NBRI, RE.NDVI as well as 
BO8 values located in the NIR (Table 4). 
This implies that, there is improvement in 
model fits when combining texture and band 
values. This is further shown by the results 
from the cross validation where the 
cvRMSEr of the best model dropped by 3% 
as compared to the model with band values 
only (Table 4).  

Planet Scope 

Two sets of models were developed from 
Planet Scope data with a maximum of two 
variables. The best model with lowest AIC 
values comprised of texture metrics of the 
NDVI. Combination of all variables i.e bands 
and texture of indices, resulted into the 
selection of only textures-based variables 
(Table 4). This implies that, texture variables 
have strong statistical relationship with AGB 
as compared to band values. Results from the 
cross validation indicated that, the cvRMSEr 
for best Planet Scope model was 72.1% 
which was relatively higher as compared to 
the best model derived from the Sentinel 2 
data when using parametric methods (Table 
4). 

 

 

 

 

 

 

 

 

 

 



Tanzania Journal of Forestry and Nature Conservation, Vol 91, No. 1 (2022) 132-153 

142 

 

Table 4. Performance of GLMs fitted with predictors from Sentinel 2 and Planet Scope  

Notes: aBO3= Band 03, CLG = Green-band Chlorophyll Index, B8A_mean = Mean texture metric of Band 8A, B03_dis = 
Dissimilarity texture metric of Band 03, = CLG_3x3_dis= Dissimilarity texture metric of Green-band Chlorophyll Index, 
NBRI_3x3_dis = Dissimilarity texture metric of Normalized Burn Ratio Index, CLG_3x3_dis = Dissimilarity texture metric 
of Green-band Chlorophyll Index, RE.NDVI_783_3x3_dis = Dissimilarity texture metric of Red-Edge Normalized 
Difference Vegetation index 2, B08 = Band 08, NIR_avg = Average value of the Near Infrared, NDVI_second moment = 
Second moment texture metric of the Normalized Difference Vegetation Index, NDVI_corr = Correlation texture metric of 
the Normalized Difference Vegetation Index. 

Performance of Non �±parametric 

Sentinel 2 

Random forest best regression models, with 
different sets of predictor variables were 
developed. Unlike, the parametric method, 
the best model comprised of the texture of 
metrics of BO3, B12, BO4, BO5 and 
BO6.The cvRMSEr for the best random 
forest (RF) model was slightly higher when 
compared to the best GLM. 

Planet Scope  

Based on the cross validation results, model 
developed using the texture variables of the 
NDVI turned out to be the best with the 
RMSEr of 69.8 and cvRMSEr of 72.2 (Table 
5). The values were slightly lower compared 
to the values obtained using the parametric 
method. Furthermore, compared to Sentinel 
2 random forest models, the value is slightly 
lower (Table 5).  

Table 5. Performance of random forest models fitted with predictors from sentinel2 and planet 
sat data sources. 

Data 
source 

Predictor 
category 

Predictorsa 
Calibration  Validation-k-fold 

AIC  
pseudo 
R2 (%)  

RMSE 
(Mg/ha) 

RMSEr 
(%)  

cvRMSE 
(Mg/ha) 

cvRMSEr 
(%)  

Sentinel2 

Band BO3 3798 7.6 174.5 69.5 175.6 70.0 
Indices CLG 3819 2.0 183.0 72.93 184.0 73.3 

Texture 
of Bands 

B8A_mean, 
B03_dis 

3809 5.0 179.1 71.3 180.9 72.0 

Texture 
of indices 

CLG_3x3_dis, 
NBRI_3x3_dis, 

3801 7.3 175.5 69.9 177.1 70.6 

All  

CLG_3x3_dis, 
NBRI_3x3_dis, 
RE.NDVI_783_3x3_dis, 
B08 

3776.6 20.0 166 66 168.1 67.00 

Planet 
Planet 

Band 
Values 

NIR_avg 3814 3.0 181 72.3 182.3 72.6 

Texture 
of indices 

NDVI_second moment, 
NDVI_corr  

3808 5.2 179 71.6 180.8 72.1 

All  
Only the above texture 
variables were selected 

      

Data 
source 

Predictor 
category 

Predictorsa Out of the bag Validation-k-fold 
RMSE 
(Mg/ha) 

RMSEr 
(%)  

cvRMSE 
(Mg/ha) 

cvRMSEr 
(%)  

Sentinel 2 Band Values BO4, BO12, BO3 182 72.6 181.2 72.2 
Indices CLRE, NDREI2, RE.NDVI_705, 

NDREI1, SAVI, GNDVI 
192 76.6 191.9 76.5 

Texture of 
Band values 

B03_3x3_var, B12_3x3_dis, 
B04_3x3_dis, 
B04_3x3_var, B05_3x3_dis, 
B06_3x3_var 

175.4 70.0 178.3 71.1 
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Notes: aBO4 = Band 04. , BO12= Band 12 , BO3 = Band 03, B03_3x3_var = Variance texture metric of Band 03, 
B12_3x3_dis = Dissimilarity texture metric of Band 12, B04_3x3_dis = Dissimilarity texture metric of band 04, 
B04_3x3_var = Variance texture metric of Band 04, B05_3x3_dis = Dissimilarity texture metric of Band 05, 
B06_3x3_var = Variance texture metric of Band 06, CLG_3x3_mea = Mean texture metric of Green-band 
Chlorophyll Index, GNDVI_3x3_mea = Mean texture metric of Green Normalized Difference Vegetation Index, 
CLG_3x3_dis = Dissimilarity texture metric of Green-band Chlorophyll Index, NDREI2_3x3_var = Variance 
texture metric of the Normalized Difference Red Edge Index2, EVI_3x3_mea = Mean texture metric of Enhanced 
Vegetation Index, CLRE_3x3_var = Variance texture metric of Red-edge-band Chlorophyll Index , 
NDVI_3x3_mea = Mean texture metric of Normalized Difference Vegetation Index, GNDVI_3x3_var = Variance 
texture metric of Green Normalized Difference Vegetation Index, CLG_3x3_mea = Mean texture metric of Green-
band Chlorophyll Index, Green_avg = Average value of Green band, NIR_mod = Mode value of Near Infrared 
band, Blue_mod = Mode value of Blue band, NIR_avg, = Average value of the Near Infrared band, Red_sd = 
Standard deviation value of the Red band.  

Relative efficiency 
Relative efficiency was computed based on 
best models for each of the dataset. the 
results showed that the RE values for both of 
the datasets were >1, indicating that there is 
gain in precision of the estimates when using 
either sentinel-2 or planet sat data for AGB 
estimation. For sentinel 2, the R.E value was 
1.2 while for Planet Scope the R.E value was 
1.1. This implies that, the efficiency of 
sentinel 2 is 20% and for planet sat is 10% 
greater than field-based inventory. 
 

Prediction Maps 

AGB prediction maps in Mg/ha based on 
Sentinel 2 images were developed using best 
GLMS and random forest model (Figure 4). 
The mean AGB prediction obtained from the 
map was 243.729 Mg/ha when using GLM 
and 257.47 Mg/ha when using the random 
forest model. Both of the values were close 
to mean AGB obtained using the field based 
data (Table 1). The standard deviation of the 
AGB predictions from the map when using 
GLM was 183.70 and 84.81 when using 
random forest

Data 
source 

Predictor 
category 

Predictorsa Out of the bag Validation-k-fold 
RMSE 
(Mg/ha) 

RMSEr 
(%)  

cvRMSE 
(Mg/ha) 

cvRMSEr 
(%)  

Texture of 
indices 

CLG_3x3_mea, 
GNDVI_3x3_mea, 
NDVI_3x3_dis, CLG_3x3_dis, 
NDREI2_3x3_var, 
EVI_3x3_mea, 
CLRE_3x3_var, NDVI_3x3_mea, 
GNDVI_3x3_var 

186.3 74.0 182.8 72.8 

All  BO4, B12, B04_3x3_var, 
B03_3x3_var 
CLG_3x3_mea 

178.3 71.0 185.2 73.8 

Planet  
 

Band Values Green_avg, NIR_mod, Blue_mod,  
NIR_avg, Red_sd 

186.2 74.1 182.3 72.7 

All  NIR_mod, Green_avg, 
Red_sd, Blue_mod 
NIR_avg, NDVI_corr  
NDVI_secmom, NDVI_entropy 

175.2 69.8 180.7 72.0 
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.  
Figure 4. AGB prediction maps for each of the forest based on GLM and RF predictions as well 
as the planet satellite background

DISCUSSION 
In this study, we demonstrated the potential 
of Sentinel 2 and Planet Scope remotely 

sensed data for modelling, predicting and 
mapping AGB in the tropical mountain 
forests of west Usambara in Tanzania. To our 
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